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A View of Unconstrained Optimization

\ Abstract
y

Finding the unconstrained minimizer of a function of more than one variable is an important problem
with many practical applications, including data fitting, engineering design, and process control. In addi-
tion, techniques for solving unconstrained optimization problems form the basis for most methods for solv-

ing constrained optimization problems. This paper surveys the state of the art for solving unconstrained

briefly give some mathematical background. Then :‘:zixscuss Newton's method, the fundamental method
underlying most approaches to these problems, as well as the inexact Newton method. The two main prac-
tical deficiencies of Newton’s method, the need for analytic derivatives and the possible failure to converge
to the solution from poor starting points, are the key issues in unconstrained optimization and are addressed
nextmaa;a;ty of techniques for approximating derivatives, including finite difference approxi-
mations, secant methods for nonlinear equations and unconstrained opq:nirra(tion. and the extension of these
techniques to solving large, sparse problems. T{c}\‘hd:;;’ﬂi::%m:’meiwds used to ensgre conver-
gence from poor starting points, line search methods and trust region methods. go‘mu;bmﬂydrscuss two
rather different approaches to unconstrained: optimization, the Nelder-Meade simplex method and conju-
gate direction methods. Finally we comment on some current research directions in the field, in the solu-
tion of large problems, ,u}s\?lution of data fitting problems, new secant methods, the solution of singular

problems, and the use of paralicl computers in unconstrained optimization.
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optimization problems and the closely related problem of solving systems of nonlinear equations. First wé %f € o




1. Preliminaries

1.1 Introduction

This chapter discusses the most basic nonlinear optimization problem in continuous variables, the
unconstrained optimizaiion problem. This is the problem of finding the minimizing point of a nonlinear

function of n real variables, and it will be denoted

min.iraize f R*=>R . (1.1)

It will be assumed that f (x) is at least twice continuously differentiable.

The basic methods for unconstrained optimization are most easily understood through their relation
to the basic methods for a second nonlinear algebraic problem, the nonlinear equations problem. This is
the problem of finding the simultaneous solution of # nonlinear equations in n unknowns, denoted

given F:IR* -5 R*, find x. for which F(x.)=0 (1.2)
where F (x) is assumed t0 be at least once continuously differentiable. Therefore, this chapter also will dis-

cuss the nonlinear equations problem as necessary for understanding unconstrained optimization.

Unconstrained optimization problems arise in virtally all areas of science and engineering, and in
many areas of the social sciences. In our experience, a significant percentage of real-world unconstrained
optimization problems are data fiting problems (see Section 6.2). The size of real-world unconstrained
optimization problems is widely distributed, varying from small problems, say with n between 2 and 10, 0
large problems, say with » in the hundreds or thousands. In many cases, the objective function f (x) is a

. computer routine that is expensive (o evaluate, so that even small problems often are expensive and

difficult to solve,

The user of an unconstrained optimization method is expected to provide the function f(x) and a
starting guess to the solution, xo. The routine is expected to return an estimate of a local minimizer x. of
J (x), the lowest point in some open subregion of IR*. The user optionally may provide routines for
evaluating the first and second partial derivatives of f (x), but in most cases they are not provided and
instead are approximated in various ways by the algorithm. Approximating these derivatives is one of the

main challenges of creating unconstrained optimization methods. The other main challenge is to create
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methods that will converge to a local minimizer even if xo is far from any minimum point. This is referred
to as the global phase of the method. The pan of the method that converges quickly to x., once it is close
10 it, is referred to as the local phase of the method.

This emphasis of this chapter is on modem, efficient methods for solving unconstrained optimization
problems, with particular attention given to the main areas of difficulty mentioned above. Since function
evaluation so often is expensive, the primary measure of efficiency often is the number of function (and
derivative) evaluations required. For problems with large numbers of variables, the number of arithmetic
operations requircd by the method itself (aside from function evaluations) and the storage requirements of
the method become increasingly important.

The remainder of this section reviews some basic mathematics underlying this area and the rest of
continuous optimization. Section 2 discusses the basic local method for unconstrained optimization and
nonlinear equations, Newton's method. Section 3 discusses various approaches to approximating deriva-
tives when they aren’t provided by the user. These include finite difference approximations of the deriva-
tives, and secant approximations, less accurate but less expensive approximations that have proven to lead
10 more efficient algorithms for problems where function evaluation is expensive. We concentrate on the
most successful secant method for unconstrained optimizasion, the *‘BFGS'’ method, and as motivation we
also cover the most successful secant method for nonlinear equations, Broyden'’s method. Sections 2 and 3
cover both small and large dimension problems, although the solution of small problems is better under-
stood and therefore is discussed in more detail. Methods that are uscd when starting far from the solution,
cailed global methods, are covered in Section 4. The two main approaches, line search methods and trust
region methods, both are covered in some detail. In Section 5 we cover two impornant methods that do not
fit conveniently in the Taylor series approach that underlies Sections 2 through 4. These are the Nelder-
Mead simplex method, an important method for solving problems in very few variables, and conjugate gra-
dient methods, one of the leading approaches to problems with very many variables. Section 6 briefly sur-
veys a number of current research directions in unconstrained optimization. These include further
approaches to solving problems in many variables, special methods for problems arising from data fitting,
further issues in secant approximation of derivatives, the solution of problems where the Jacobian or Hes-

sian matrix at the solution is singular, and the use of parallel computers in solving unconstrained optimiza-
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tion problems.

The scope of this chapter is limited in many important ways which are then addressed by other
chapters of this book. We do not consider constrained optimization problems, problems where the domain
of permissible solutions is limited to those variables x satisfying one or more equality or inequality con-
straints. Constrained optimization problems in continuous variables are discussed in Chapter 3; the tech-
niques for solving these problems draw heavily upon the techniques for solving unconstrained problems,
We do not consider problems where f (x) is not differentiable; these are discussed in Chapter 9. We do not
discuss methods that attempt to find the global minimizer, the lowest of the possibly multiple local minim-
izers of f (x). Methods for finding the global minimizer, called global oprimization methods, are discussed
in Chapter 11. Finally, we do not consider problems where some or all of the variables are restricted to a
discrete set of values, for example the integers; these problems must be solved by techniques such as those
discussed in Chapters 2, 4, 5, and 6. It should be noted that in most nonlinear optimization problems
solved today, the variables are continuous, f (x) is differentiable, and a local minimizer provides a satisfac-

tory solution. This probably reflects available software as well as the needs of practical applications.

A number of books give substantial attention to unconstrained optimization and are recommended to
readers who desire additional information on this topic. These include Onega and Rheinboldt [1970],
Fletcher [1980], Gill, Murray, and Wright {1981], and Dennis and Schnabel [1983].

1.2 Taylor Series Models

Most methods for optimizing nonlinear differentiable functions of continuous variables rely heavily
upon Taylor series expansions of these functions. This section briefly reviews the Taylor series expansions
used in unconstrained (and constrained) optimization and in solving systems of nonlinear equations, and a
few mathematical properties of these expansions. The matcrial of this section is developed fully in Oniega
and Rheinboldt {1970} or Dennis and Schnabel [1983].

The fundamental Taylor series approximation used in solving a system of nonlinear equations (1.2) is

the first two terms of the Taylor series approximation to F (x ) around a current point x,,

M¥(x)=F(x.)+J(x) (x —x). (1.3)
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Here the notation MY stands for the current Newton mode! because we will see in Section 2 that Jocal
methods for solving nonlinear equations are based on Taylor series models of the form (1.3), and Newton's

method is based specifically on (1.3). J(x.) denotes the n xn Jacobian matrix of first partial derivatives of

F(x)at x.; in general,

()] =

where F; (x) denotes the i component function of F (x).

LE) st ol a4

The local convergence analysis of methods based upon (1.3) depends on the difference between
F(x) and M¥(x). This and the next error bounds in this subsection, as well as most convergence results in
continuous optimization, use the concept of Lipschitz continuity. A function G of the n -vector x is said to

be Lipschitz continuous with constant y in an open neighborhood D cIR*, written G € Lip(D), if for all

x,yeD,

HIGE)-G)ITsyllx =yl (1.5)
where {1 - 1! and 111 11| are appropriate nomns. Now if J(x)e Lip{D) in an open neighborhood
D e R* containing x and x., using a vector norm |! - || and the associated matrix norm, then it is a stan-
dard result that

HMNx)-F(x)N s-} Nx ~x 12, (1.6)

This result is similar to the familiar Taylor series with remainder results for functions of one variable but

requires no mention of higher derivatives of F .

The fundamental Taylor serics expansion used in unconstrained optimization is the first three terms
of the Taylor series of f (x) around x,,

m¥(x; +d)=f(x.)+g(x.)Td + %A dTH(x.)d . (1.7
Here g(x.) denotes the n component gradient column vector of first partial derivatives of f (x) evaluated

at x; in general

of (x .
= R 1,---n.
(8 ()] —5'(_)'):, J=l.---n (1.8)
Also, H (x.) denotes the n xn Hessian matrix of second partial derivatives of f (x) evaluated at x. ; in gen-

eral
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[H ()l =35L§7t3. L i=l,eem, j=lo (1.9) i)
Note that H (x) is symmetric if f (x) is twice continuously differentiable. u:'.
e
W
If H (x) is Lipschitz continuous with constant y in an open neighborhood of R* containing x and x., :"'
l.|‘
using the norm 11 < 11, then it is a standard result that o't
-“ﬂ
Im¥(x) - f ()| s% lx-x, 113, (1.10) 3
C|Q :
This result is used in convergence analysis of unconstrained optimization methods. .;;
t
0 I“
The standard Taylor series with remainder results from the calculus of one variable also extend "'
>
single valued functions of multiple variables. For any direction 4 € R* there exist ¢, t> € [0,¢] for which Y :
It
¥
fx+d)=fRx)+gx +0d)Td .11 P!
and 0‘.:(
i
fa+d)=f(x)+gx)Td+%dTH(x +1d)d . (1.12) (‘.‘.
- These results are the keys to the necessary and sufficient conditions for unconstrained minimization that we j: \
i
=
consider next. By
",
1.3 Necessary and Sufficient Conditions for Unconstrained Optimization (8
- g
Algorithms for solving the unconstrained minimization problem are based upon the first and second =~
order conditions for a point x» 1o be a local minimizer of f (r). These conditions are briefly reviewed in o5
.S
AN
For x+ 10 be a local minimizer of f (x), it is necessary that g (x« ) = 0, where g (x) denotes the gra- ,,‘
dient defined in (1.8). e
I\"
.:’, {
Theorem 1.1 Let f (x) : R*—R be continuously differentiable, and let y € R*. If g (y)=0, then y isnot a N 3
Yy
local minimizer of f (x). o
4
Proof: If g (y)=0, then there exist directions d € IR* for which g(y)Td < 0; an example isd = —g(y). For :'_?,'.
NN
any such direction d, we have from (1.11) that ,::;'
RX
fo+ud)-f@)=1-dTg( +nd) (1.13) _
for some ¢; € (0,1). Also by the conunuity of f (x), there cxists >0 such that g(y + 1,d)7d < O for any ';:
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t; € [0,8]. Thus for any stepsize ¢ <3,

fO+d)<f(Q). (1.14)

Therefore y cannot be a local minimizer of f (x).

Directions d for which g(y)7d < 0 are called descent directions for f at y. Descent directions play

an important role in the global methods for unconstrained optimnization discussed in Section 4.

The above argument with d = g (x. ) also shows that g (x.) = 0 is necessary for x. to be a local max-
imizer of f (x). To distinguish between minimizers and maximizers it is necessary to consider the second

derivative matrix H (x. ) defined in (1.9). First we need the definition of a positive definite matrix.

Definition 1.1 Let H € R** be symmetric. Then H is positive definite if vTHv > 0 for all nonzero

v € R~

There are several equivalent characterizations of positive definite matrices; another common one is
that a symmetric matrix H is positive definite if and only if all of its eigenvalues are positive. If vTHv 20
for all v, H is said (0 be positive semi-definite. A negative definite or negative semi-definite matrix is one

whose negative is positive definite or positive semi-definite.

Theorem 12 Let f(x) : R*—R be twice continuously diffcrentiable, and let x« € IR". If g(x)=0 and
H (x) is positive definite, then x. is a local minimizer of f (x).
Proof : By (1.12) foranyde R",

flxe +d)=f(xe)+g(xe)d +%dTH (xe +1d)d (1.15)
for some ¢ € (0,1). By the continuity of f (x) and the positive definiteness of H (x. ), there exists §>0 such
that for any direction d with |1d |1 <8 and any scalar ¢ with 11 <], H (x. +td) is positive definite. Thus

for any d with 11d i1 <3, we have from (1.15) and g (x )=0 that

fxe +d)> f(x). (1.16)
Therefore x. is a local minimizer of f (x).

By a similar argument it is easy 10 show that a necessary condition for x» to be a local minimizer of a

twice continuously differentiable f (x) is that g (x. ) = 0 and H (x.) is positive semi-definite; in this case, it

IR SYSERSR FLALEEIN! §nr



is necessary to examine higher order derivatves to determine whether x. is a local minimizer. If g (x) =0
and H (x.) is negative definite, then the above argument shows that x. is a local maximizer of f (x). If
g(x.) = 0 and H (x.) has both positive and negative eigenvalues, then x. is said to be a saddle point of

S (x). A saddle point is a local minimizer of some cross-section of f (x) and a local maximizer of some

other cross-section.

1.4 Rates of Convergence

Most algorithms for nonlinear optimization problems in continuous variables are iterative. They
generate iterates x; € IR*, k =0,1,2,- - - which are meant to converge to a solution x«. In this case, the

rate of convergence is of interest. This subsection reviews the rates of convergence that are important in

continuous optimization.

Definition 1.2 Let x, € IR*, k=0,1,---. Then the sequence {x,} is said to converge to a point

x. € IR* if for every i, the i** component (x; —x. ); satisfies

kli_r,n_ (X. —Xc).' =0. (1.17)
If, for some vector norm 11 - 11, there exist K20 and a € [0,1) such that for all k2K,

Nxgar=xo 1l S Ny —xe 11, (1.18)
then {x, } is said to converge ¢-linearly to x+ in the norm |l - 11. If for some sequence of scalars {o,} that
converge to 0

Uxpay =2 11 S0 g —xe 11, (1.19)

then {x,} is said 10 converge g-superlinearly o x.. If {x,} converges to x. and there exist K20 and 00
such that for all k2K,

Hxpa—xe Il S llxy —xe 112 (1.20)
{x:} is said to converge g-quadratically (o x» .

Note that a sequence may be linearly convergent in one norm but not another, but that superlinear

and quadratic convergence are independent of the choice of norm on IR*.
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Most methods for continuously differentiable optimization problems are locally ¢-superlinearly or
locally q-quadratically convergent, meaning that they converge to the solution x. with a superlinear or
quadratic rate if they are started sufficiently close to x.. In practice, local quadratic convergence is quite
fast as it implies that the number of significant digits in x, as an approximation to x. roughly doubles at
each iteration once x; is near x.. Locally superlinearly convergent methods that occur in optimization aiso
are often quickly convergent in practice. Linear convergence, however, can be quite slow, especially if the
constant a depends upon the problem as it usually does. Thus linearly convergent methods are avoided
wherever possible in optimization unless it is known that o is acceptably small. It is easy o define rates of
convergence higher than quadratic, e.g. cubic, but they play virtually no role in practical algorithms for

multi-variable optimization problems.

The prefix g preceding the words linear, superlinear, or quadratic stands for ‘‘quotient’’ rates of con-
vergence. This notation, commonly used in the optimization literature, is used to contrast with r (*‘root’")
rates of convergence, which are a weaker form of convergence. A sequence is r-linearly convergent, for
example, if the errors lix; — x» |} are bounded by a sequence of scalars {r;] which converge g -linearly to
0. The ellipsoidal algorithm for linear programming (Khachiyan [1979)) is a perfect example of an -
linear method since the radii of the ellipses are a sequence of error bounds that converge g-linearly to zero.
Similar definitions apply to other r-rates of convergence; for further detail see Ortega and Rheinboldt

[1970]. Thoughout this book, if no prefix precedes the words linear, superlinear, or quadratic, g -order con-

vergence is assumed.




2. Newton’s Method

Among nonlinear optimization researchers, there is a strong suspicion that if any iterative method for
any problem in any field is exceptionally effective, then it is Newton’s method in some appropriate context.

This is not to say that Newton’s method is always practical.

In this section we derive the Newton iteration for nonlinear equations through the affine or linear
Taylor series model (1.3) in subsection 2.1, and the Newton iteration for unconstrained optimization
through the corresponding quadratic model (1.7) in subsection 2.2, We give a rigorous, but intuitive,
analysis of the local convergence of the comesponding iterative method, called the Newton or Newton-
Raphson method, and set the stage for a discussion of some clever and effective modifications. The first of
these modifications is controlled inaccuracies in the solutions of the model problems. The resulting inexact
Newton method is the topic of subsection 2.3, and it can greatly reduce the expense of computing Newton
steps far from the solution. This is especially important for large problems, since then the Newton step
itself is likely to be computed by an iterative method. Some additional modifications are discussed Section

3.

2.1. Newton’s method for nonlinear equations

The underlying principle in most of continuous optimization is to build, at each iteration, a local
model of the problem which is valid near the current solution estimate. The next, improved, solution esti-

mate is gotten at least in part from solving this local modcl problem.

For nonlinear equations, the local model is the Taylor series model (1.3). The basic Newton iteration

can be written as the root of this model,

xo=xc—=J(x ) Fxc).
But in keeping with the local model point of view, we prefer to think of it as:

Solve J(x.)s¥=-F(x.)

(2.1.1)
andset x,=x. +sV,

where sV denotes the current Newton step, because this results directly from
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0=F(x:)+J(x)(x -xc). (2.1.2)
Notice that we could also have solved directly for x.. from (2.1.2), giving

I (e )xe == F(xc)+J (xc)xe . (2.1.3)

In exact arithmetic, these formulations are equivalent as long as the columns of J (x.) span R***. In
computer arithmetic, (2.1.1) generally is preferable. The reason is that in practice, we expect the magnitude

of the error in solving a linear system Az =b by a matrix factorization and backsolve technique to be

estimated by

A=zl = pnan- na-i = pxa),

where 7 is the computed solution, the components of A and b are machine numbers, and y is the quantity
known as ‘machine epsilon’ or ‘unit rounding error’, i.c., the smallest positive number such that the com-
puted sum of 1+ is different from 1. Since we generally expect s¥ t0 be smaller than x., we expect
11§, ¥ =s¥11 in (2.1.1) to be smaller than 11£,-x.1l in (2.1.3). Of course, we commit an error of magni-
tde pilx, I} when we add 5.V to x. to get £, in (2.1.1), but this does not involve x(J (x.)). Thus, we will
think always of (2.1.1) as Newton’s method with the linear system solved using an appropriate matrix fac-
torization. This discussion is relevant for all the methods based on Taylor series type models. For a dis-

cussion of the computer solution of linear equations, see Stewart [1973] or Golub and Van Loan [1983].

The main theorem of this section is given below. We use the notation N (x, §) to denote the open

neighborhood about x of radius 5.

Theorem 2.1.1. Let F : R* = R" be continuously differentiable in an open convex set D cR*. If there
exists x»€D and 7, B, > O such thatJ (x) € Lip(N(x+,7)), F (x+)=0, and 11J (x- )~} 11 SB, then there exists

&> 0 such that for every xo € N (x. ,£) the sequence (x; ] generated by

Xk =xe=J () IF (), k=0,1, -

is well defined, converges 10 x., and satisfies

xpar=xe I SByllxg —xo 112,
Proof: Since Lipschitz continuity implies continuity, and since the determinant is a continuous function of

the entries of a matrix, it is easy to see that we can assume without loss of generality that J (x) is invertible
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11

for

x € N(x.,r) and that 11J(x)" 11 2.
Thus, if x € N (x.,€) for e<min{r,(2BY)"'}, x;,; exists and

Xeer—Xe =Xp =J ()7 F (x3) =20 +J ()7 F (x0)
=J () F (xe )= F () =T (xi )(xe =xx)] .
Using (1.6), this gives

Dxegr=xe 1 < NJCx Y H - HEF (e )= (xx Yxe —x)11
sza.} HNxg—xe N2SByllx; ~xo 112
SPEla -zl S Ll -z 11,
which establishes both convergence and the quadratic rate of convergence, and completes the proof.

Notice that we could apply Newton's method o G(x)=J(x)'F(x), for which G(x-)=0,
JG(x+)=G (xe)=1I, and Jg(x)€ Lipg/N (x+,r), and the identical sequence of iterates and convergence
analysis would result. This emphasizes one of the major advantages of Newton's method; it is invariant
under any affine scaling of the independent variable. Furthermore, note that the Lipschitz constant of
J(x),By. is a relative measure of the nonlinearity of F as given by the change in J scaled by J (x. )~!.

This is satisfying since we would like to believe that F is no more or less nonlinear if we change our basis.

In section 3.3, we give an example of the application of Newton’s method to a specific problem. It is
compared there to Broyden's method which is superlinearly rather than quadraticly convergent, but which
does not share two major disadvantages of Newton's method. Broyden's method does not require the
expensive and error-prone computation of J (x) or the finite difference approximation discussed in Section
3.2, and it reduces the be successful to solve the linear system (2.1.1) for the Newton step from O(n?) w0
0(n2) operations. Broyden’s method shares the third major disadvantage of Newton’s method in that both

require a good initial guess xo t0 guarantee success. Becausc of this, they are referred to as local methods.

and must be augmented by the techniques discussed in Section 4 to be successful from poor starting points.
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2.2. Newton’s Method for Unconstrained Optimization

In this section, we look at Newton’s method for the unconstrained minimization problem (1.1). It
can be derived by applying the basic iteration (2.1.1) w the first order necessary condition g(x)=0 for
unconstrained optimization given by Theorem 1.1. This gives the basic Newton iteration

Hx)sN=~g(x)
Xe=Xx. +5V.

(2.2.1)

The Newton iteration (2.2.1) is equivalent to solving for a zero of the gradient of the Taylor series
quadratic model m¥(x. +s) given by (1.7). If H (x.) is positive definite, then x. is a local minimizer of m¥
by Theorem 1.2. In fact, it is the global minimizer of the model mY since x. is the only zero of Vm¥(x).
This leads to a very satisfying interpretation of Newton's method for (1.2) when H, is positive definite.
We construct a uniformly convex quadratic model mY of f by matching function, gradient, and curvature
to f at x., and then step to the global minimum of the model. Furthermore, since H (x.) is positive
definite, then the Cholesky factorization can be used to solve for s» in (2.2.1). We will see another advan-

tage in Section 4.1. If H (x.) is not positive definite, however, then we have no reason to believe that (2.1.1)

may not lead towards a saddle point or even a maximizer.

Newton’s method has all the same disadvantages for unconstrained minimization that it had for non-
linear equations. That is, it is not recessarily globally convergent, and it requires ((n3) operations per itera-
tion. In addition, we need H (x. ) to be positive definite rather than just nonsingular. Furthermore, both first

and second partial derivatives are required. We will address these issues in Sections 3 and 4.

We finish the subsection by stating a convergence theorem for (2.2.1) that follows directly from
Theorems 1.2 and 2.1.1.

Theorem 2.2.1. Let f:IR* - R be twice continuously differentiable in an open convex set D cIR”.
Assume there exists x € D and 7, B > 0 such that g(x.)=0, H (x.) is positive definite, |4 (x.)-111 <P,
and H (x) € LipyN (x,r). Then, there exists € > 0 such that for every xo€ N (x- , ), the sequence {x; } gen-
erated by

a=x-Hx)'gx)
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is well defined, converges to the local minimizer x. of f, and satisfies
Hxgsy=xe 11 € Byllxg ~xe 112,
2.3. The Inexact Newton Method

This section deals with a topic of importance in the use of Newton's method, panicularly for large
dimensional problems. In such cases, iterative methods like the Gauss-Seidel or conjugate direction
methods are often the only practical way to solve the linear system (2.1.1) or (2.2.1) for the Newton step.
The natural question is **how does the inaccuracy in the solution of (2.1.1) for the Newton step affect the

rate of convergence in the exact Newton method.""

An analysis by Dembo, Eisenstat and Steihaug [1982] leads to the following result.

Theorem 2.3.1. Let the hypotheses of Theorem 2.1 hold, and let {n: } be a sequence of real numbers satis-

fying 0sn: <7 < 1. Then for some €> 0, and any xo€ N (x-,€), the inexact Newton method correspond-

ing to any {x, } defined by

. e W
F (X )sx =~ F (x )+ ry, where <
R TF G Tl =™ @2.3.1)
Xke) =X + 5k

is well defined and converges at least ¢ -linearly 1o x. , with

Hxper=Xe Sz —x0 H .
If {n.} converges 10 0, then {x: } converges superlinearly w0 x.. If {n¢) is O({!IF (x;)11?) for 0<p <1,

then (x; } converges 10 x. with g-order 1+p.

For example, this result guarantees quadratic convergence if at each iteration the approximate New-

ton step s satisfies

“F("l‘,);(i;(ﬁ"“ W < min (1, N1F @)1 . 232)

The quantity on the left of (2.3.2), sometimes called the relative residual, is usually monitored in practice
when solving a linear system by iteration. Thus, the analysis gives a convenient stopping rule for the linear,
or inner, iteration for solving the linear problem (2.1.1) which is embedded in the outer iteration for solv-

ing the nonlinear problem (1.2). All these results also apply to the unconstrained optimization problem.
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Notice that Theorem 2.3.1 is for an iteration (2.3.1) in which every quantity can be computed if F °
and F can be. In the next section, we will consider the effects of using approximations to the Taylor series
model. There are strong connections between the analysis of those approaches and the inexact Newton

method. In particular, for unconstrained optimization, (2.3.1) is equivalent to a statement about the inaccu-

racy in an approximation to the gradient V£ (x; ).

-

Al =
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3. Derivative Approximations

In section 2, we developed the local theory for Newton's method based on the appropriate Taylor
series model. In practice, users prefer routines that approximate the required derivatives either by finite
differences or by some of the clever and effective multi-dimensional secant methods. In this section, we

will consider several instances of these approximations. They all involve using local models of the form

M. (x. +d)=F (x;)+B.d @G

10 solve (1.2) or of the form

me(z +d) = f () + g (%) d + 7 d7B.d (3.2)

to solve (1.1). We call these quasi-Newton models.

In Section 3.1, we will see the surprisingly simple local convergence analysis for any quasi-Newton

iterative method

B, st N =-F(x.) or B, sV =—-g(x.)

3.3
Xo=Xc +597 3.3)

based on these local models. Section 3.2 will present the finite-difference Newton method.

Sections 3.3 and 3.4 will be devoted to some popular multi-dimensional secant methods for choosing
B.. We will concentrate on Broyden's method for nonlinear equations and the BFGS method for uncon-
strained optimization. Finally, in Section 3.5, we will consider the incorporation of sparsity into the
approaches for approximating derivatives, including some techniques to save significantly on the cost of

obtaining B, by finite differences when J (x.) has a known sparsity structure.

Since we will deal with sparsity later in this section, it seems appropriate to introduce this important
practical property here. In general, we say that a matrix is sparse if few of its entries, say less than 15%,
are nonzero. For nonlinear systems of equations, J(x) is sparse if most of the component equations F,
involve very few of the unknowns x;. For unconstrained minimization, / (x ) is sparse if most variables do

not interact in the sense that most of the cross partial derivatives are zero.

In practice, the sparsity of J(x) or H (x) is independent of the value of x, and this allows for some

important savings at every ilcration in solving for the Newton step in (2.1.1). Naturally, we wish 1o incor-
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porate such a useful property into B, in order to have the same savings in (3.3). Furthermore, it seems
intuitive that we should be able 1o more efficiently approximate J (x) or H (x) if we know that most of its

entries are zero.

To some extent, this is true. However, sparsity is entirely a property of the basis used to represent x,
and so we may make our approximation methods more dependent than before on the specific representation

of the problem. This can lead to practical difficulties of the sort that are usually called ‘bad scaling’.

3.1. General convergence theory

In this section, we will consider general local models of the forms (3.1) and (3.2), and we will com-
pare them to the appropriate Taylor series or Newton model 10 obtain one-step local convergence estimates

for the associated iterative methods (3.3).

Lemma 3.1.1. Let F satisfy the hypotheses of Theorem 2.1.1 and let M. (x.+d) be given by (3.1). Then
foranyd,

UF (x +d) =M, (x. +d)1l S £ Ud 112+ 1 [B, - F (x)}d 11 . (3.1.1)

In addition, if B! exists and e, =x» —x., €, =x —x, for x, defined by (3.3), then

e il € lw,-lu[.}ue,ln "B, ;,Je(’j‘l”“”] e I
c

(3.1.2)
S IIBC“II[% el + 118, —J(x,)ll] e 1l .

Proof: First, we add and subtract the Newton model (1.3) 1o obtain

WF(x. +d)-M.(x. +d) !l = IF (x, +d) 2t MN(x. +d)~F (x.)-B.d I
S NF (x, +d)-MN(x, +d)1 + 1F (x)+J (x)d - M, (x. +d)I .
This says that the error in the mode! (3.1) is bounded by the sum of the error in the Newton model and the
difference between the Newton and quasi-Newton models. Now we apply (1.6) to the first term and sim-
plify the second term 1o obtain (3.1.1).

To obtain (3.1.2), we use F (x- )=0 and (3.3) to write
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.l
Xo—Xe 3 X =X =BV [F (x.)-F (x+)] :gf
= BVF (x + )~ (F (xe)+Beeo)] -
\
0 .
]
|
e I S TBA- IF (x +e.)- M. (x: +e.) 1 W
i\
and (3.1.2) follows from (3.1.1).
& '
The convergence theorems of Section 2 for Newton's method follow very simply from (3.1.2) with : )
B. =J(x.). Indeed, we have reduced the analysis of any quasi-Newton method (3.3) 10 an analysis of the '
con. esponding Jacobian or Hessian approximauon rule. There are three especially important properties to .
consider. :,
First, sometimes the error in B, as an approximation w J (x.) is controlled by a parameter 6 in the oy
y 3
approximation rule; we will see that the finite difference Newton method fits this mold. In such rules, it is
U
sometimes the case that if the sequence of iterates (x; ) is well defined and converges to x. , then (B, ) con- N
verges 10 J(x-). Such rules are said to provide consisriens Jacobian or Hessian approximations. (See : y
‘4
Ornega and Rheinboidt [1970].) The reader will immediately see from (3.1.2) that consistent methods are :
at least ¢ -superlinear. Of course, Newton's method is consistent and ¢ -quadratic, if J (x) is Lipschiwz con- ':.
tinuous. 3
Second, Dennis and More [1974] prove that a quasi-Newton method that is convergent with
sufficient speed that ‘2 lleg Il <o (r-linear is sufficient), will be ¢ -superlinear if and only if the approxi- ':.
mations are directionally consistent in the sense that
. - [ 1Y = ‘
Jim [By ~J (x1)] Ter T 0. (3.1.5) 3
0
The sufficiency of (3.1.5) for superlinearity is obvious from (3.1.2). The proof of necessity is a bit harder. J
U
These two consistency properties arc useful especially for analyzing rates of convergence after con- i,
vergence of (x; ) has been established. It is ciear that convergence can be established with much less. In K
particular, we see from (3.1.2) that if we could ensure that for every k such that xo, ..., x; is defined, that B, 4
R
would be defined and R
BN SB, WBy=J(xe)11 S8, and Bo< 1, (3.1.6) N
N
)

s Y g
¢ [ fl gt
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then we could get convergence by starting so close that

asflyllegnr+8)<1.
This would ensure that lle;ll Sallegll < llegll and local g-linear convergence would follow by induc-
tion.
A uscful property of the Jacobian or Hessian approximation rule in obtaining (3.1.6) is called
bounded deterioration. There are various uscful forms, but the one needed to anaiyze the Broyden, PSB,
Schubert, and DFP secant methods is from Dennis and Walker [1981], pg. 981 where the reader can find a

proof of the next two theorems.
Theorem 3.1.2. Let F satisfy the hypothesis of Theorem 2.1.1, and let B. € R*** have the property that
B+ exists and for some operator norm

H-BJF(xe)lSre <11,

Let U:R* x R*** — 2% be defined in a neighborhood N =N, xN; of (x-,B.) where N, = and N,

contains only nonsingular matrices. Assume that there are nonnegative constants a; and o, such that for

each (x,B)e N, and for x,=x —B-F (x), every B, € U(x,B) satisfies

HB.—=Be I S[1+010(x,x,)P)- B =Be Il + 00(x,x.)P

foro(x.x,)=max (Ix —xs i, Ix,=xs |].

Under these hypotheses, for any r € (r., 1), there exist constants €, 5, such that if Ixg-x- | <€,

and |Bo-B- | <§,, then any iteration sequence (x, ) defined by

o= =-Br'F(x), Bia€U(xBy),

k=0,1,... exists, converges ¢-linearly 10 x» with

IXpo1=Xe | S7-Ixa~xe |,

and has the property that {18, 1) and { 1B, |} are uniformly bounded.

There are some important ways in which boundcd deterioration may be weaker than consistency. In

particular, the essence of the method might be 1o make B, not be 100 much like J (x, ), but to be more con-

venient 10 use in (3.3). For example, in the nonlinear Jacobi iteration, B, is taken to be the diagonal of

¢
r3

J(x2) so that sf~V defined by (3.3) only costs n divisions. Of course, the Jacob: ieration will not converge
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unless the partial derivatives on the diagonal dominate the rest of J (x;). A standard sufficient condition for
this which implies (3.1.6) in the /.. nomm is called strict diagonal dominance. See Ortega-Rheinboldt
[1970]. This brings up another point; the key 1o a convergence analysis for a specific method is often in "

choosing the proper norm. o

Finally, some methods, like the BFGS secant method, are more readily analyzed by thinking of them

[

as directly generating approximations to the inverse. The following theorem from Dennis and Walker

[1981], pg. 982 gives an inverse form of the bounded deterioration principle.

. a
ol

.

Theorem 3.1.3. Let F satisfy the of Theorem 2.1.1, hypothesis and let X« be an invertible matrix with \',.
I —K-F {(xs)l Sre < 1. ;
Let U:IR" xR** 2R be defined in a neighborhood N =N xN; of (x»,K.), where N, cQ. :
Assume that there are nonnegative constants o, 0 such that for each (x,X) in N, and for x,.=x ~KF (x), :
the function U satisfies E
-

K =Ko 1| S [140;0(x,x,)P] 1K =Ko 1l + 00(x , x.)° !

for each K,e U(x,K). Then for each r € (r.,1) there exist positive constants €,,5, such that for

>

Ixo—xe | <€, and 1Ko-K. | <3,, any sequence {x,) defined by

ARG
"

)
Xeoy =X —KiF (1), Kisr€ Uxe, Ki) i
k=0,1,..., exists, converges g-lincarly to xo with |xzs —xe 1 Srixy—xe 1, and has the property that B
3
(1Ke 1) and (1K) are uniformly bounded. &
.
_\ 3
3.2. Finite-Difference Derivatives -
g 3
"
In Section 2 we saw that the local models furnished by the appropriate partial Taylor series are very ;4
useful in solving continuous optimization problems. Sometimes, the appropriate partial derivatives are not
available analytcally, and other times the user is not willing to be bothered providing them. Thus, most ::
RS
good optimization packages provide routines for estimating partial derivatives by finite differences. These “'
l" '
routines may (and should) even be used to check for errors in any derivatives the user does provide. g

&2, - K s -t [ .l .I"’--.."I. ..Q.I .i DR . N - - - M
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| In this section, we will discuss briefly the surprisingly rich topic of how to compute finite-difference
approximations to first and second partial derivatives. We will discuss aspects of mathematical accuracy,

numerical roundoff, convergence, and efficiency. We begin with accuracy.

We know from elementary calculus that

Fi(x +he;)-F;(x) _ 0Fi(x)
h T dx;

i)
where ¢; is the j* column of the n xa identity matrix. This is called the forward difference approxima-
tion and it suggests approximating the j* column of J (x.) by

BjF (ke h) = 5= IF (xe + b))~ F (x:) 3G.21)
for an appropriately chosen vector & of finite-difference steps. We will use the notation AF (x, 4 ) for the

Jacobian approximation whose j* column is given by (3.2.1).

Lemma 3.2.1. Let 11+ 11 be a norm for which lie; I1=1and let F € Lip(D) with x. . x. +h;e;, j=1,...n

all contained in D. Then

HAF (x k) =T (xc)e; 1V S F1ky 1 (3.2.2)

Furthermore, in the {; operator norm,

AN wmax 3 la, 1,
=

it follows that

IlAF(xc.h)—J(xc)Il,ss}llh e (3.2.3)

where Hh ||..-Irs\la$x.lh,'l is the /. vector norm.

Proof: The proof follows easily from the Taylor series remainder (1.6), since

WAF (e h)=J (xe)e; 1 = Lhy 1= 1F (xe +hie,)=F (k)= (xc by e, 11
= lh, =1 ||F(X¢ +h,~e,~)—m£’(x, +h,~e,-)l|

S thiit Lithie, n2= im0

We get (3.2.3) directly from (3.2.2) since lle, I1,=1 and so

4
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tF,
"
IlAF(xc.h)-J(x,)Ill-Eiasx“IIA,-F(xc,h)—J(x,)ej|I1 L'
. iy
Smaa-}lh,l-%llhll-. 3
~
Equation (3.2.1) also is used to approximate the gradient by the forward difference approximation .,:
N
8f (e, by = LETMTG) oy (3.2.4) 7
Although this forward difference approximation is generally accurate enough, sometimes central differ- .3_
ences are useful because of roundoff considerations we will discuss later. Since central differences are :'
most often used for gradient approximations, we define them in that context. ¢
>
8if (xe b= LBt Hie )T (e “hici) (3.25) 3
.l
and os
8f (xe,h) = (Buf (eo k), Baf (ke AT . "
D
Lemma 3.2.2. Let 11-1] be a norm such that lle; 1 =1, and let H € Lip(D), with x..x. +hie;,i=1,...n :‘
all be contained in D . Then 5.f (x., h) given by (3.2.5) obeys -
=
d N,
19 Jh)- 1< 2
8if (xc.h) gx"L (x) (3.26) =
and - t, '
N8 (xe h)= g (x)Ila s F 1R N2, R
X
Proof: Note that from (1.7), (1.8) we get N,
. \
pS"
U (xe +hiei)=ml(x; + hie))-f (x. ~hie))-m¥(x. - h;e;)) k
=f (e +he)-f (= ~he) =25 L (x). :
Thus, from (1.10) and the triangle inequality, p
)
1f (x4 hiei)=f (e -he) =2 2L x)13= F 1,12 s
from which (3.2.6) follows directly. )
o
*u
Note that the central difference gradicnt is more accurate than the forward difference gradient, but {
that it requires 2a rather than n evaluations of f (x) if we assume that f (x. ) is already available. ;-\,
N
o
.-.i
- K]
D
]
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If the gradient is obtained analytically, but the Hessian is to be approximated by finite differences,
then it can be approximated by applying (3.2.1) 1o g (x), obtaining the approximation Ag (x., & ). However

the matrix Ag (x.,4) would not be symmetric although H (x.) would be. In this case, a sensible strategy
would be 0 use B, = -%-[Ag (xc)+4g (x)T] as the Hessian approximation. Some theoretical justification
for this comes from noting that B, is the Frobenius norm projection of Ag (x. ) into the subspace of all sym-

metric matrices. Thus, from the Pythagorian Theorem,

HH (x.)=B: llr S I|H, -Ag (xc ,h)llg

where

NAUF = (3 la;; lz)’lz (3.2.7)
)

is the Frobenius norm. This norm will be useful later when we again want an inner product structure on the

vector space of real matrices.

It is also possible to obtain an approximate Hessian using (n2+ 3n)/2 evaluation of f (x). By expand-
ing the Taylor series through third order terms, a stronger version of (3.2.9-10) can be proven in which the

1h; 1/1h;) and | h; 12/1h; | terms are removed, and the constant is different.

Lemma 3.23. Let 11+ 1] be a norm such that Ile; Il =1 and let H € Lip(D) with xc, x. +h;e;, x. +hje;,

and x. + h;e; +hje;,i,j=1, ---n all contained in D .

Let (H,] w LBt hicivhie)=f e +hiei)=f (e +hie))+f (50)

X (3.2.8)
Then,
i Ih; 12 1h; 12
(Hedy = (H Dy | S E | 2 +31h 1 #3101 42 | (3.2.9)
/) i
If the I}, 1., or Frobenius norm is used, then
n Lh; 12 \h, 12
WH, - H (x )1} 5—67- ms.x 2W+3Ih‘l+3lhf|+2_|'7h_ . (3.2.10)
] ] ]

Proof: The proof is very much like the previous proof. Lets; ~hie;,s; =h;e; and s;; =s; +5;, then

f (xe +5ij) = m¥xe + 5= [f (xe +85:)=mP(x +5)1=[f (xc +5,)-mP(xc +5;))
=f(xe +5;)=f (% +5i)=f (xc +5;)+f (xe)=hih; [1 ()i -
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- From the triangle inequality and (1.10), we get yt
| i by (He 1= iy T D) | S F D00 134 s 13+ 15, 1) \
S%[(IIS;IH-H:,II)3+Ils,~II3+Ils,~II3] ,

SE R 1+ 1k 1P+ 1k 1+ 1h;13) X

from which (3.2.9) and (3.2.10) follow.

Now we have seen some uscful rules for approximating derivatives by differences of function values,

and we have analyzed the accuracy of these approximations. So far, it seems as though the obvious thing :

to do is to .r:00se the vector & to be very small in order to make the approximate derivatives more accu-

rate. The difficulty is that these approximation rules are certain to lose more accuracy due to finite- 3
precision cancellation errors as A becomes smaller. ' /:
In section 2.1, we introduced machine epsilon p as the smallest positive quantity for which the j
. floating-point sum 1+u would be different from the floating point representation of 1. Thus, even if we \
ignore the fact that all functions are to be evaluated in finite-precision, we see that 14| must be large

enough that x. +h;e; is not the same as x. in finite precision arithmetic, or else the numerator in the for- -~

ward difference would be zero. This means that 1h; | 2p!{x.}; I, .-
If we remember that function values are computed in finite precision with ¢ digits then we can 1:

believe that if we obtain a value of say F; (x.)=(.d ....d, )10, it is reasonable that d, or d,_, are much less : .
likely to be correct than d, or d;. This can lead to real problems when coupled with the fact that
Fi(x; +hjej)=(dy" -+ d;?)+10*" will probably have e ‘=e, and d, ‘=d; for k=1,2,..,F <t, with T \
closer to ¢ the smaller 14; 1 is. In other words, the smaller we take |4; |, the more of the most accurate v
leading digits of F(x) are canceled out by the subtraction F; (x, +h;e;)Fi(x;) in the numerator of the Y
forward-difference formula (3.2.1). This means that the difference will have at most (t -7) meaningful ;
digits, which are computed using the less trustworthy trailing digits of F (x). Thus, |4, | must at least be
large enough so that F; (x. ) and F, (x. + h;e;) differ in some trustworthy digits. ‘

The standard rule to use in setting the entire vector A for (3.2.1) or (3.2.4) is :
he =pd x. 3.2.11)
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4
where pir is the relative accuracy in the subroutine used to evaluate F or f. In other words, if the routine t
p
is accurate o # <t digits, then py = 107" while if it is accurate in all its digits we take pr =p. If some -
1 '
component [x); =0, then we take h; =y Z for lack of a better choice. This rule attempts to balance the :'
mathematical and numerical error in (3.2.1); see e.g. Dennis and Schnabel [1983]. N
The reader will see that all these numerical difficulties clearly are compounded in the Hessian .
approximation (3.2.8), which calls for a larger relative magnitude of h since the inaccuracies in the :
numerator are divided by h2. We also see that the bound in (3.2.9) points toward choosing all the com- 2
ponents of & to be about the same magnitude. Thus, we recommend that x. be scaled as well as possible, e
and an analysis suggests that X

1
he =pr ¥ x| (3.2.12)

T,
P

This rule is also suggested for use in (3.2.5).
Next we state a theorem on the theoretical rate of convergence of finite-difference methods. The

reader can easily furnish a proof by combining Lemma 3.2.1 with Lemma 3.1.1.

Theorem 3.2.4. Let F and x» obey the hypotheses of Theorem 2.1.1 in the {, norm. There exists £,11>0

such that if {A,]) is a sequence in R* with 0< 1 4, Il.<7, and xo€ N (xs,€), then the sequence (x; ) gen-

erated by

Fxe+(h)iej)—F (xx)

(mj ’ (hk)j #0
Byej = oF |
E\Xt). (h); =0,

TN P R S AR (WINPT Pl

.
»

Xen =% -BEF (), k=01, -~

is well defined and converges q -linearly to x. . If li‘_r:n. Ay 11 =0, then the convergence is g -superlinear. If
there exists some constant C, such that A, 11.SC,llx, —x. |1, or equivalently, a constant C, such that

li 11 .S C21I F (x;) 11, then the convergence is ¢ -quadratic.

Even though Theorem 3.2.4 does not consider the finite precision effects discussed above, it reflects

the practical experience with finite difference approximations : if the stepsizes are properly selected, then

<
2
-I
>
K

]
Y
‘
N
LY
\

finite difference methods give similar performance to the same methods using analytic derivatives. The

main disadvantage of using these approximations is their cost. The forward differcnce approximations

—1- -?;’-{
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(3.2.1) 10 J(x) or (3.2.4) w0 g (x) require n additional evaluations of F (x) or f (x), respectively, while the
central difference approximation (3.2.5) to g (x) requires 2n additional evaluations of f (x). The approxi-
mations to H(x) require either n additional evaluations of g(x) for (3.2.1) or, for (3.2.8), (n2+3n)2 ¢
evaluations of f (x). These costs can be considerable for problems where function evaluation is expensive.

In the remainder of this section we discuss cheaper approximations to J(x) and H (x) that may be used

instead.

It urns out that if g (x) is not available analytically, it is almost always approximated by finite differ- N
ences, because an accurate gradient is crucial to the progress and termination of quasi-Newton methods,

and the secant approximations that we discuss next are not accurate enough for this purpose. In Section 5.1

h I

we discuss a class of methods that does not require gradients.

B 2,

3.3. Broyden’s Method

B A

In one dimension, the secant method is an effective local method for solving nonlinear equations. It -

FEER

can be viewed as a forward-difference method in which the step size h. used in constructing the new
iterate from x, is taken to be x.-x., so that the local model derivative B, is

(F (xo+x. —x,))-F (x,)}/[x. —x,]. Thus, no extra F values are needed to determine B, and build the new

IR % T S SR N

local model since F (x.+h.)=F(x.).

From the local model point of view, the secant method follows from assuming that we will determine

R PR PLIRY

the approximate denvative B, in the new mode! of F(x.+d), M.(x.+d)=F (x.)+B.d, by requiring

M .(x.) o maich F (x. ). This means that

Fix)=M (x.+(x ~x.))= F(x.)+B.(x. -x.)

P Pt AT

is used to determine B ,. This results in the system of linear equations

B s, =Yy, (33])

where s, =x.-x. and y. =F (x,)- F (x.).

A P I e e I

For n =1, (3.3.1) uniquely determines B.. Forn > |, there is an n x (n - 1) dimensional linear man:-

fold in IR*** of solutions B 10 (3.3.1). The most commonly used sccant method for systems of nonlinear

equations, Broyden's method, makes a specific selection of 8. from this manifold which costs only a small
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multiple of n2 10 compute and is a rank-one correction 10 B, . It also has a very elegant geometric interpre-

tation given by the following lemma from Dennis and More [1977].

Lemma 3.3.1.Let B, € R***, 5.,y. € R*, s #0. Then Broyden’s update

— T
B+=B; + ()'c Bc-"c)sc

375, (3.3.2)

is the unique solution to

min HB =B, |5 subjectto Bs. =y, .

T
Proof: If Bs. =y.,then B.-B. =(B Bc] ScSc and so
sest
”B¢-B¢ “F <8 —B‘ “F . “';Ts_“2= 1):] "Bc ”F )
cSe

Thus, Broyden’s method generalizes the 1-dimensional secant method by changing the current
derivative approximation as litue as possible in the Frobenius norm consistent with satisfying the secant or
quasi-Newton equation (3.3.1). For this reason it is called a least-change secant update. Of course, this

leaves the problem of finding B o to start the process. Generally By is obtained by finite differences.
Broyden, Dennis and More [1973] proved that Broyden’s method is locally ¢ -superlinearly conver-

gent. The proof is in two parts, and it is typical of all the least-change secant method proofs. First, one

establishes local q-linear convergence by proving bounded deterioration and applying Theorem 3.1.2.

Then, one gets g -superlinearity by establishing (3.1.5).

Lemma 3.3.2. Let D cIR" be a convex domain containing x, x., and x.. Let J € Lipy(D ), B, € R**,
and let B., be given by Broyden’s update (3.3.2). Then,

NB.=J(xs)I1p S UB, =J (xe) l1f +YO(x ., X.) (3.33)

Proof: Remember that o(x. ,x,)mmax (llx, —xe ll3, llx,—xe 113].

+J(xe)s. =B, 5.)sT
By-J(x)=B,-J(x)+ Qe s 2Bt

=J(xe T
= (B =J (xo)){ ] - Sc-‘c 4 Ye=J (xe)se)sd
C Sc SC

=B -J )| 1 - ""T I[J(xmsc) ~Jd S5 "’3
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It is then straightforward to obtain 1
) \'
sesd s:',
IIB,—J(x-)II,SIIB,—J(x-)IIp-IIl-?ch—c-Ilz :
+yqu, +15. —xe 115d, - n n
S 1B, ~J @) IF +Y0 (e, o
NN
. Se Scr Se S;r . . . . '\-)
since / - <5 and 3= are [, projection matrices and so they have unit norm. I
Sg S¢ Sg Sc - P
This completes the proof, but we can’t resist some comments about the geometry of the proof and its 5 F»
PO
relation to the more general derivation of least-change secant methods. Notice that -‘;}
hey!
s, s, :c s,T <
B,—J(I-)=[B¢-J(x-)]' I- +[B¢—J(X')] . ‘;.
.
In R"** with the Frobenius norm inner product, this is just the orthogonal decomposition of B .~ J (x. ) into Y
- b
its projection into the subspace of matrices that annihilate 5. and the orthogonal complement of the annihi- ::‘i
lators of s.. But the essence of Broyden's method is that B . has the same projection as B, into the annihi- AL
lators of s.. Thus, ’_-
NG
s
By—J(xe)=[B; = J (xe )l[l - "‘s‘} +[Bye=J(xe )] s"“ (3.34) :",
- ] )
Now the norm of the first term on the right hand side of (3.3.4) will be smaller than 1B, ~J (x«)| I, while
n
+ ‘l ’
the magnitde of the second term is totally dependent on the sagacity of our choice of y, =B s, as an $:
AN
approximation 10 J (. )s. . .;x
V:" {
In general, the idea of a least-change secant method is to adopt an inner product structure on matrix .
space and a secant condition (3.3.1). In addition, one may require B, and B, to be in some closed linear :'Z;-
manifold A of matrices defined by another desirable property like symmetry or sparsity. One then obtains ,-
K
B. by orthogonally projecting B, into the generalized intersection of A with the matrices that satisfv -' f
(3.3.1), using the chosen inner product. By generalized intersection, we mean the projection of the set of ::* A
secant matrices into A . X
~
The next subsection contains another application of this approach. Dennis and Schnabel [1979] y
derive many more interesting updates based on this approach. Dennis and Walker {1981] give conditions . ::::'.
on the secant equations and the inner products used at cach iteration so that the resulting quasi-Newton ::':;

NNV MO LY N S Ve s, SIS St e
ALY

O Y )
'.‘,n.’.‘ .'l‘.s;'l S 'lal lh\.ki WA, Y UV AS SN ADA Bl -



method is locally ¢-linearly as fast as the mcthod that uses By mB.. Schnabel [1983) considers multiple
secant equations. Dennis and Walker [1985] consider the case when an appropriate secant condition is

imperfecdy known. Grzegorski [1985], Flachs {1986] relax the conditions on A to convexity.

Now we return to the consideration of Broyden's mcthod. In order to complete the proof of super-

linear convergence, we need 1o show that (3.1.5) holds. In fact, it is not hard o show that

. 1I[By- L
Jim, [B: “{‘g-l)]n =0 (3.3.5)

is also equivalent to superlinear convergence under the same hypotheses. Notice that

By =J(x))sally _ , [Ba=J(xs))sas
512 =1 St e (3.3.6)

and so (3.3.5) seems a reasonable condition (o try for in light of our previous discussion. For complete-

ness, we state the theorem. For an elementary complete proof, see page 177 of Dennis and Schnabel

[1983).

Theorem 3.33. Let F satisfy the hypotheses of Theorem 2.1.1. There exist positive constants €,8 such

that if llxg—xs llz<gand [IBo—J (xg)! ! <8, then the sequence {x, ) generated by Broyden's method

X =x-B'F(u), k=01, -

-B S
Byi=8By + O 3 :.:‘) Z

Yo = F (X)) - F (X)) St =Xa1— %

is well defined and converges ¢ -superlinearly 0 x- .

Proof: We will sketch the proof. First, notice that Lemma 3.3.2 shows that the hypotheses of the bounded
deterioration result, Theorem 3.1.2, holds with B. =J (x. ). Thus the method is at least q -linearly conver-
gent. LetEy =By —J(xe).

In order to show (3.3.5), we need a technical lemma. From the Pythagorian Theorem in R**", we

have

]
IIE.[I—%] s =[u5k W3- u-E—;Z{;’—[ug 2
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]
where the inequality follows from : a2 | | 20 implies (a2-B2)? <a-p22a

By (3.34),(3.3.6), and (3.3.7),

HEwallF < IIE.[I-%] g+ Epn —T—;"‘;f g

1 NE M2 |2 WEpas Ny
‘"E‘””'mﬂn‘{ Ml | * T,

Thus, from some manipulation and the proof of Lemma 3.2.2,

2
[-EI-IE%IQ—)] S2HE g [”Eg g~ HE ol p +YO’(X.¢1.X§)] .

Now, since Lemma 3.3.2 shows that { 118, |l ¢} is uniformly bounded and !l x; —x. 11, converges to zero at

least ¢ -linearly, ( I1E; |l £) is uniformly bounded by some b and go(x,.l,x,) < oo, This gives that
J

“EgSg”z 2
"g [—m;] <2 [”Eo”r - UE yllf +‘Y’§G(Xt¢l.xg)]

< oo,

and (3.3.5) follows.

A natural question is whether (B, ] always converges o / (x. ). The answer is that it does not and that
the final approximation may be arbitrarily far from J(x. ), c.f. pg. 185 of Dennis and Schnabel {1983]. On

the same page is the following example which provides a comparison with Newton’s method.

Let

xf+x3-2

ORI

which has a root xe =(1,1)7. The sequences of points generated by Broyden's method and Newton's

method from xo=(1.5,2)T with Bo=J(xo) for Broyden's method, are shown below.
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Broyden's Method Newton's Method

1.5 20 X0 1.5 20
0.8060692 1.457948 Xy 0.8060692 1.457948
0.7410741 1.277067 X3 0.8901193 1.14557
0.8022786 1.159900 X3 0.9915891 1.021054
0.9294701 1.070406 X4 0.9997085 1.000535
1.004003 1.009609 Xs 0.999999828 1.000000357
1.003084 0.9992213 x6  0.99999999999992  1.0000000000002
1.000543 0.9996855 3 2 1.0 1.0
0.99999818 1.00000000389 Xs
0.9999999885 0.999999999544 X9
0.99999999999474  0.99999999999998  x,o
1.0 1.0 X1

The final approximation to the Jacobian generated by Broyden's mcthod is
1.999137 2.021829
A= [o 9995643 3. 011004] » whereas J(x.) = [% 3] :

- 2
We proved superlinear convergence by proving that AZ_‘D[ —”T%‘]‘-Iu] <eoo, It is easy to see that if

g{ ﬂﬁg—:‘l#] <, then (B, ) converges, because

By ~Bi = O =Besi)se _ Eusisl

sésy = sl +0 @R xe) .

Furthermore, if we just knew how fast ﬂrlf-‘—:‘n-l gocs 1o zcro, we could say more about the rate of conver-

gence of (x;) 0 xo. The only related result we know about is due to Gay [1979]). He proves that

X2.s1mxe if J(x) is constant for all x, i.c., F is affinc. This allows him to prove the 2a -step ¢ -quadratic
]
convergence of {xa } 10 x-, and that in tum implies 7 -order at least 2%,

Broyden's method is very popular in practice, for two main reasons. First, it generally requires
fewer function evaluations than a finite diffcrence Newton's mcthod. Sccond, it can be implemented in

ways that requirc only 0(n?) arithmetic operations per iteration. We conclude this section by mentioning

~

.:{
three basic ways w do this. n
If n is small enough to allow storage of a full n xn Jacobian approximation and use of a OR factori- o
[
zation 1o solve (3.3), then we recommend a scheme due 0 Gill, Golub, Murray, and Saunders (1974). In \’“'
o
o
Ny
~
q
-
I‘.
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! T
this scheme, one has ,
B, =Q.R. butwants B.=Q.R. o
(ye —B.s.)sI $~
and.since8.=8,+-‘—-r;—‘—‘-8,+uv7. : ’
o

B.=Q. R +(QTu)vT) & Q. IR, +wT].

Now a low multiple of n2 operations is sufficient to get a QR factorization of a rank-one update to an upper Ve
7,
~

triangular matrix and so o

B.=Q.R, where R, +wvT = QR and _
.
The second and third ways of implementing the update are both based on the Sherman-Morrison- :;
-
’

Woodbury formula (c.f. Dennis and Schnabel [1983] pg. 188). It is easy to see that if B is nonsingular and . \
by

u,v € IR*, then B +uvT is nonsingular if and only if 1 +v7B-'u s #0. Then, 2
v

@ +wTy =B8-1- L @-1)v7p-1 (3.3.8) '.E
o
=l -1 @ upmis. (3.3.9) .

:'. 4

Broyden [1965] suggests updating the sequence of approximate inverse Jacobians using (3.3.8), i.e., '. ]
(BV)e=(B 1), + (sc =B ey )sI(B). ::

* ¢ s&B1). Ye

.

This is only feasible for about the same class of dense problems as the QR updating scheme. The QR Ny

scheme is more trouble to implement, but it has the advantage that the condition number of the current :"::
A

Jacobian approximation can always be monitored by using standard techniques to estimate the condition >

number of an upper triangular matrix. Approaches based on (3.3.8) may become of increased importance e

on parallel computers. .'..::'

The final way of implementing Broyden's mcthod is very useful for large problems, and it is based Ay,
on (3.3.9). The idea can be found in Matthies and Strang [1979). At the & step, we assume that we have :-:_
g

some way of solving Box =b for any b for example, we might have a sparse factorization of Bo. This :::

S

allows us to recursively solve ‘3’:
Bisisier == F (xpa1) -

2
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.
by using (3.3.9) and solving - g
= l - \
Biw m(’k Bisi), N
computin, =1+ s w .
putng s 0T ™ 2
solving BiSsi=-F (as1),
. - 1 ‘[-Ft-ol : )
and computing Skel =Ske1 — e My b
P
This scheme must be resiarted whenever the number of vectors allocated to store the update vectors is
filled. ..
~
)
o
3.4. BFGS Method for Uncoustrained Minimization
'l
Now we discuss the selection of a secant approximation B, (o the Hessian matrix in the model )
4* .
(3.3.1). We could simply apply Broyden's method to find a root of g(x)=0. This is not done because ;:
more effective alternatives exist based on using more of the structure of the Hessian matrix which we are ,
trying to approximate. In this section we will try 1 acquaint the reader with the high points of this rich l:‘.
material. For more information, see Dennis and More [1977], Dennis and Schnabel {1979}, Flewcher ,
"
[1980], or Dennis and Schnabel [1983). e
: . N
The analog of (3.3.1) for solving g (x)=0 is the same except for the definition of y, : e
iy
Bs; =y = g(x4)-8(x), (34.1) <
]
where B is meant to approximate / (x.,). Equation (3.4.1) causes the quadratic model o
o
»~
Mm@, +d)=f(x)+g(x.)d++dTB.d >
- ~
A
to interpolate f (x.), g(x4), and g (x.). However H (x,) is symmetric, while the Broyden update 8. of B, -
generally will not be. Also p
o)
(B +BI)-H(x ) S B ~H @)l :
~ .
indicates that we can approximate H (x.) more closely with a symmetric B.. '.".
b
Thus, it is natural to use the least change ideas of the last secuon to select B, as the projecuon of 8. A
onto the intersection of the matrices obeying (3.4.1) with the subspace A of symmetnc mameces in R*** :
Y

'-'j;i:'E;:-'-:-:-,n’-'-'- -:fN-I-- " '.f‘{_:l'-f.i'(f < 'l *f
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»
Then we obtain the PSB or Powell symmetric Broyden update -
- Oe'JcSc)SI+Sc(Yc—B¢S¢)T _ 5{(ye =B se) s st .
B‘ - Bc + S::’}c (S;:rsc )2 ) (342) _
Note that B. will inherit symmetry from B.. This update can be quite effective, and we will meet it again .
L]
g
in the next section. It is not generally used in practice for two reasons. First, it can have difficulty with A
poorly scaled problems. Second, we will see in Section 4 that it is desirable that each B, be positive '
definite, but B . will only inherit positive definiteness from B, under some conditions more restrictive than '_:,
those required for (3.4.1) w0 have a symmetric positive definite solution B . A
An obviously necessary condition for (3.4.1) to have a positive definition solution B is that o,
-
sTy. =sIBs. > 0. (3.4.3) he
We will now prove by construction that (3.4.3) is also sufficient for the existence of a symmetric and posi- !:
tive definite solution B to (3.4.1), by constructing the BFGS method due to Broyden [1969], Fletcher _
[1970], Goldfarb [1970] and Shanno [1970]. N
If we assume that B, is symmetric and positive definite, then it can be written in terms of its Chole- '
sky factors .
3
B, =L.LT, L. lower triangular. 3
In fact, L. will probably be available as a by-product of solving (3.3). We want B, 1o be a symmetric posi- :
tive definite secant matrix which is equivalent to the existence of a nonsingular J, for which -
N
B.=JJI and JJLsc =y, . N,
\ )
Let v, = JTs., so that J v, =y, and v]v, =yTs. if /. exists. If we knew v, , then it would seem reasonable ~]
to take M,
- r .
Jo=Lc+ _(_%"vv‘i (3.4.42) :
v 1
in view of the success of Broyden's method. Transposing (3.4.4a), multiplying both sides by s, , and using e
JIs. = v, and vlv, =ys. gives
nT .
ve =J1s, =Lzsc*vc '(I—L‘y%i) N
\'
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which simplifies to

1
S| 2|7 3.4.4b
Ve = [m] L¢sc ( )

and which exists if y7s. > 0.

Equations (3.4.4a, b) define J, such that J JT =B, is the BFGS update. It is customary to write the
BFGS update as

T T
_ Yeyd _ BescséB.
B.=B.+ s, s7B.s. (3.4.5)

but it is not efficient to actually calculate and factor such a matrix at each iteration. Instead Goldfarb

[1976] recommends updating the Cholesky factorization L. L] of B, by applying the QR update scheme of
subsection 3.3.3 to

JI=LT+uvl

to get JT=Q.LT in O(n?) operations. In fact, we don’t need to form Q. since we only care about
B,=JJT=L.QIQLT=L.LT.

This Cholesky update form is the recommended way to implement the BFGS method if a full Chole-
sky factor can be stored. For large problems, updates can be saved and the Sherman-Morrison-Woodbury

formula applied in the manner of Subsection 3.3.3. It is also possible to obtain the direct update to the

inverse,

c-B-lcccT cc‘B-lccT ;rc‘B-lccchT
(B1), = (B, + Le={ )y)sﬁssc(s B Deye) _ ylGs ((stZ)z)“ (3.4.6)

The BFGS method can also be derived as the least-change symmetric secant update to (B-!), in any
inner product norm of the form 111(¢:) 11l = UM, (-)MT || where M MTs. =y.. In other words, the BFGS
method is the result of projecting (B.)™! into the symmetric matrices that satisfy B!y, =s,, and the projec-

tion is independent of a large class of inner product norms.

If instead we project B, into the symmetric matrices for which B, s. =y, in any norm of the form

WM M T UHe m L) HI where M MTs, =y, , the result is the update formula
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— e =Bese )T +ye (e =B se)T - sT(ye ~Bese) yeyX
B,=8B.+ o o7 . 347

Equation (3.2.7) is called the DFP update for Davidon [1959], Flewcher and Powell [1963], and it also

passes positive definiteness from B, 10 B, whenever ys. > 0.

Theorem 3.4.1 is a local superlinear convergence result for all three methods we have discussed in
this subsection. This is a combination of three theorems from Broyden, Dennis and Moré {1973]. The

proofs follow the same outline as the proof for Broyden’s method.

Theorem 3.4.1. Let f satisfy the hypothesis of Theorem 2.2.1. Then, there exist € > 0, 8 > O such that the
sequences generated respectively by the BFGS, DFP, or PSB methods exist and converge ¢ -superlinearly
t0 x» from any x¢,8 for which |lxe ~x¢ll <€ and |1Bo—H (x-)!l £8. Furthermore, the PSB method con-

verges if H (x.) is nonsingular but not positive definite.

The BFGS method seems to work especially well in practice. Generally it requires more iterations to
solve a given problem than a finite-difference Ncwton method would, but fewer function and gradient
evaluations. Most experts feel that a property which contributes to the success of the DFP and BFGS
methods is that the iteration sequences are invariant with respect to linear basis changes under reasonable
hypotheses. This property is not shared by the PSB method. The superiority of the BFGS to the DFP is

still an interesting research topic and is discussed briefly in Section 6.3.

A final issue is how 1o choose the initial Hessian approximation B in a BFGS method. In analogy o
Section 3.3 we could choose By to be a finite difference approximation w0 V2f (x), but besides being
expensive, an initial Hessian often is indefinite and then may be perturbed anyhow as we will see in Sec-
tion 4. Instead, the common practice is to set Bo=/ so that B is positive definite and the first step is in the
steepest descent direction. This choice may not correctly refiect the scale of the Hessian, and so a one-time
scaling correction often is applied during the first iteration; see Shanno and Phua {1978a] or Dennis and
Schnabel [1983].
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3.5 Sparse Finite-Difference and Secant Methods

In this section, we will consider briefly the incorporation of sparsity into the methods of the previous
three subsections. We will see that there are important opportunities for efficiency in finite-difference
Jacobian and Hessian approximations. The development of effective sparse secant methcds will be seen to

be more problematical.

Medium size dense problems are usually solvablc by library subroutines based on local models we
have already considcred. When a problem is large enough to make sparsity an important consideration, it
often is useful to incorporate the source of the problem into the method. In Section 6.1 we will discuss

some promising approaches to this end. Here we discuss general purpose approaches.
We begin with a discussion of special finite-dilference methods for sparse problems.

Curtis, Powell and Reid [1974] began one of the most elegant and useful lines of research on sparse
nonlinear problems. They noticed that if the sparsity structure of J (x) is such that some subset C; of the
column indices has the property that there is at most one nonzero in any row of the submatrix composed of
these columns, then all the nonzero element in this submatrix of AF (x., h) could be calculated from the

single function difference
F(Xc +/’¢§, h,-e,-)—F(x,) .

In order to illustrate the enormous savings possible in finite-difference methods, notice that if J (x) is tridi-
agonal, then only three extra values of F (x) are needed for any n to build AF (x., k). They are
F(x.+hiey\+heeahrer+ - - )= F(x. +dy)

F(x; +hses+hseshges+ - )m F(x. +d2)
F(xc+hses+heechoeg+ - )mF(x. +d3y).

The submatrix consisting of the first, forth, seventh, tenth, ... coh.xmns of AF (x.,h) is then determined from
the function difference F (x. +d)~F (x.). The other two submatrices are determined in the same way

from F(x. +dy)-F(x.) and F (x, +d3)~F (x.).

Curtis, Powell, and Rcid suggested some effcctive heuristics o keep the number of submatrices, and
hence the number of function evaluations, small. Coleman and Moré [1983} and Coleman, Garbow, and

More™* [1984)] exploited the connection between a subclass of graph coloring problems and the problem of
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determining how to partition the columns of J(x) to save further on function evaluations. Although they _:
proved that the problem of minimizing the number of submatrices is NP-complete, they developed some ::
very useful heuristics. E:
Li [1986] noticed that if no component of 5. =x.-x; is zero, then the function value at the past itera- ,
ton F (x.) can be used to reduce the number of extra function evaluations in either of these approaches by
one. In the (ridiagonal case, this reduces to wusing h=s. and F(x.)-F(x.-d)), ,
F(x.-d))-F(x. -dy—d3), and F (x. —dy—d3)-F(x-) respectively to calculate the three submatrices. -'_:,-
He suggests leaving the j* column unchanged if (s ); =0. His analytical and computational results sup- ;
port this approach. ; .
This approach can also be applied to approximate a sparse Hessian from gradient values. Powell and g ]
Toint {1979] developed methods to further reduce the number of gradient evaluations required in this case. *
To illustrate their main idea, assume that H (x) is diagonal except for a full last row and column. We can ;
then approximate the last column by (g (x. +h,€,)~ g (x.)]- h! and the last row by its transpose. The first f.
n -1 components of g (x. +J::l hje;)— g (x.) suffice to obtain an approximation to the rest of H (x.). Thus : '
two extra gradient evaluations suffice while n would be required for the same sparsity pattern without sym-
metry. Powell and Toint also suggest a more complex indirect approximation method. Coleman and Moré '
[1984] and Coleman, Garbow, and More™ [1985] showed that problem of minimizing the number of extra
gradient evaluations also is related to graph coloring, and again developed useful heuristics although this '
problem is also NP-complete. Goldfarb and Toint [1984] show the connection between the finite- ;
difference approximation and tiling the plane when the nonlinear problem arises from numerically solving ‘.J‘l .
a partial differential equation. ”
N
Now we consider sparse secant methods. Schubert [1970) and Broyden [1971] independently sug- E-"
gested a sparse form of Broyden’s method. Reid [1973] showed that their update is the Frobenius norm ?'
least change secant update to B, with A taken to be the set of matrices with the sparsity of J (x).
In order to state the algorithm, let us define P; to be the I projection of IR* onto the subspace z, of E‘
IR* consisting of all vectors with zeros in cvery row position for which the corresponding column position h
of the i* row of J(x) is always zero. That is, P,v zcrocs the elements of v comresponding to the zero ele- '.‘
-
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ments of row i of J(x) and leaves the others unchanged. We also need the pseudoinverse notation a* to
denote 0 when the real scalar is @ =0 and a~! otherwise. Then the sparse Broyden or Schubert method is:
Given B, sparse, and x,
solve B.s.=-F(x.).

Set X.=X. +5. and
B.=B, + z; (P, (5. )T Pi(sc))* €7 (ye =B sc e Pi(se )T . (.5.1)

Note that (3.5.1) reduces to Broyden's method if J (x ) has no nonzeroes.

Marwil [1979] gave the first complete proof that (3.5.1) is locally g-superlinearly convergent under
the hypothesis of Theorem 3.3.3. In practice, this method is cheaper than the Broyden update, but the sav-
ings are small because there is no reduction over the cost of Newton's method in solving for the quasi-
Newton step. An important practical use of this method is to update a submatrix of an approximate Jaco-

bian, the other columns of which might be generated by finite differences as suggested above. Dennis and

Li [1986] test and analyze a strategy based on using heuristics of Coleman and Moré€ to pick out subsets of
columns that can be very efficiently approximated by finite differences. The remaining columns are then
updated by (3.5.1). The results are very good, and there are indications that similar approaches are useful
in engineering applications.

For unconstrained optimization, Marwil [1978] and Toint [1977] constructed a sparse analog of the
PSB update (3.4.2). Toint analyzed the method under some safeguarding, and Dennis and Walker [1981]
give a complete proof of local g-superlinear convergence. An example by Sorensen [1981], however,
raises doubts about the utility of the method. We will not dwell on this topic because the update seems o
share the shortcomings of the PSB, and in addition, it requires the solution of an extra n xn positive
definite linear system with the same sparsity as / (x) for the update of B, to B.. Thus this method has not

had a major practical impact.

»
o
e’ e

Professor Angelo Lucia of Clarkson rcports good results using the cheap and simple expedient of

pr L5

projecting B, defined by (3.5.1) into the subspace of symmetric matrices, i.e., he uses the approximate Hes-

v %y

sian defined by -é—[B.-#BI 1. Steihaug [1980] had shown this method to be locally ¢ -superlinearly conver-

gent.
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Unfortunately, extending the BFGS and DFP algorithms to sparse problems seems at a dead end.
One problem is that a sparse positive definite approximation may not exist in some cases where y7s. > 0.
A more pervasive problem is that sparsity is not invariant under general linear basis changes, while the
essence of these secant methods is their invariance to any linear basis changes. We will comment in Sec-

tion 6.1 on some work that uses more fundamental problem structure to get around the problems of the

straightforward approach to least change secant methods for sparse unconstrained minimization.

T S Tl T b e R

P

oy

oy T

X '
.

’(“r_:‘q ’l P ;.#H{ Ly

‘{‘l’n’{

T

Py o 4
NN

-




L)

W0y

TN E YN R N bag » -5 ) TN YN R il 42l Val af oot

4. Globally Convergent Methods

The methods for unconstrained optimization discussed in Sections 2 and 3 are locally convergent
methods, meaning that they will converge to a minimizer if they are started sufficiently close to one. In this
section we discuss the modifications that are made to these methods so that they will converge to a local

minimizer from a poor starting point xo. Methods with this property are called globally convergent.

Two main approaches have emerged for making the methods of Sections 2 and 3 more globally con-
vergent while retaining their excellent local convergence properties. They are line search methods and
trust region methods. Both are used in successful software packages, and neither has been shown clearly
superior to the other. Furthermore, both approaches certainly will play imponant roles in future research
and development of optimization methods. Therefore we cover both approaches, in Sections 4.2 and 4.3

respectively. We briefly compare these approaches in Section 4.4.

The basic idea of both line search and trust region methods. is that they use the quickly convergent
local methods of Sections 2 and 3 when they are close to a minimizer, and that when these methods are not
sufficient, they use some reliable approach that gets them closer to the region where local methods will
work. The basic concept behind this global phase is that of a descent direction, a direction in which f (x)
initally decreases from the current iterate x.. Descent directions and their relation o local methods are
discussed in Section 4.1. Included in Section 4.1 is a discussion of the well-known, but slow, method of

steepest descent.

Global strategies for solving systems of nonlinear equations are obtained from global strategies for
unconstrained optimization, for example by applying the methods of this section to f (x) =l F(x) I2. Fora

discussion of this topic, se¢ ¢.g. Dennis and Schnabel [1983], Section 6.5.

4.1 Descent Directions

The basic strategy of most globally convergent methods for unconstrained optimizaton is 10
decrease f (x) at each iteration. Fundamental to this is the idea of a descent direction from x., a direction

d from x, in which f (x) initially decreases.
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The proof of Theorem 1.1 (the necessary condition for unconstrained optimization) showed that 4 is
a descent direction from x,. if and only if

Vf(x)Td <0,
ie., the directional derivative in the direction d is negative. In this case, for all sufficiently small

€>0,f(x.+ed) < f(x.). Thus given a descent direction d, one can always choose a new iterate

-~
-
x.=x.+ed so that f (x4) < f (xc). This property is the basis of globally convergent methods. *_
N
A natural question to ask is whether the local methods for unconstrained optimization discussed in h
Sections 2 and 3 yield steps in descent directions. These methods were derived by considering the local o
¢
quadratic model of f (x) around x,, which in general had the form .
:
me (x,+d) = f () + Vf (x.)Td + +dTH.d. @.1.1) N
They then chose d = -H;!Vf (x.) causing x.=x.+d 1o be the critical point of (4.1.1). ._
'l
o0
If H, is positive definite, x. is the unique minimizer of the model; furthermore :—
-4
Vf(xc)Td =—Vf(x¢)r H Vf(xc) <0 .";, :
so that d is a descent direction. On the other hand, if H, is not positive definite, then not only doesn’t the R
e
model have a minimizer, but also 4 may not be a descent direction. g
-lr X
In implementations of the leading secant methods for unconstrained minimization such as the BFGS K
method, H. always is positive definite. Thus the steps generated by these methods always are in descent .'.C
g
directions. ,:-
"o
When H. = V2f (x.), however, it may not be positive definite when x. is far from a local minimizer. '
L
Thus the Newton step d = -V2f (x.)"1Vf (x.) is not necessarily in a descent direction. We will see that -,
line search and trust regior: methods deal with indefinite Hessian matrices in different ways. ; '
'.'
The idea of choosing x. to be a step from x. in a descent direction 4 also leads naturally to the idea '
&
of taking steps in the "steepest” descent direction. By this one means the direction d for which the initial Y
rate of decrease from x. in the direction d is greatest. For this definition to make sense, the direction d ::::r
must be normalized; then we can define the "steepest” descent direction as the solution to :‘:
min Vf(x.)7d subjecttolidli=1. (4.1.2) -
deR* <
rd
<
._;’
e
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The solution to (4.12) depends on the choice of nom; for the Euclidean nom it is d

=Vf(x.)! 11Vf(x.)] 12, which is generally known as the steepest descent direction.

One classic minimization algorithm is based solely on the steepest descent direction. It is to choose

each new iterate x,,; to be the minimizer of f (x) in this direction, i.c.
choose 4 10 solve min;ai)nbize =1 V()

X=X —LVf(x). 4.1.3)

This is known as the method of steepest descent.
The method of steepest descent is an example of a globally convergent method. By this we mean
that if a sequence of iterates (x:] is generated by (4.1.3) for a continuously differentiable f (x) that is

bounded below, then lim Vf (xx) =0. However the method has several important practical drawbacks.
Most importandy, it usually is slow. If the method converges 10 x. , then it can be shown that

[LECNET DU
Xt — Xe

lirln 1 Sup 4.1.4)
where M2=V%f(x.), and ¢ = (A - AL )/(A + Ay) for (Ay, A,) the largest and smallest eigenvalues of
V2f (x.). Furthermore, for any f (x), (4.1.4) can be shown to be an equality for some starting xo. Thus the
method is only linearly convergent and may be very slowly convergent for problems with even slightly
poarly conditioned V2f (x.). Secondly, as written (4.1.3) requires the solution of an exact one-variable
minimization problem at each iteration. The steepest descent method may be implemented with an inexact
minimization and still retain (4.1.4) but the work per iteration may still be large. Thirdly, the method is
very sensitive to transformations of the variable space. If the variable space is changed 0 £ =T x, the
Hessian matrix in this new variable space becomes T-T V2f (x) T-!, so that by the above discussion the
rate of convergence may be significantly altered. Indeed, the effectiveness of even a single steepest des-
cent iteration in reducing f (x) may depend significantly upon the units used in defining the variables. In

contrast, the performance of the Newton or BFGS methods is unaffected by linear transformations of the

variable space.

For these reasons, the method of steepest descent is not recommended as a general purpose opumiza-
tion method. We will see, however, that steepest descent steps play a role in the trust region methods dis-

cussed in Scction 4.2 and in the conjugate gradient methods of Section 5.2. Furthermore, versions of the
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method of steepest descent continue to be used successfully in some practical applications, for example _'

problems where x, is close to x« and the cost of computing V2 (x) is prohibitive, even though conjugate

gradient or BFGS methods may be more efficient for suc. problems. ;

.2 Line Search Methods Y

]

'

The general idea of a line search method is 10 choose a descent direction from x. at each iteration, :‘

and select the next iterate x., to be a point in this direction that decreases f (x). That is =
choose d. for which Vf (x.)T d. <0 .
P
choose x, =x. +1.d. 1. >0, so that f (x.) < f (x). 3
'
£
Note that the method of steepest descent fits this framework.
. Modem line search methods differ from the method of steepest descent in three important ways: 1)
d. usually is chosen to be the Newton or secant direction; 2) . is chosen by a procedure that requires X
much less work than an exact minimization; and 3) 1, =1 is used whenever possible, so that the line search )
1
method reduces to Newton's method or a secant method close 1o a local minimizer. In this section we sum- ‘
marize the convergence properties of such methods, the selection of the search direction 4., and practical
procedures for calculating ¢, .

Starting with the work of Armijo [1966] and Goldstein [1967], it has been shown that line search :
methods will be globally convergent if each step satisfies two simple conditions. The first is that the
decrease in f (x) is sufficient in relation to the length of the step s.=t. d, ; the relation

W]

¢

fEI<f)+aVf(x) s 4.2 X

usually is chosen 10 implement this condition where ae(0,1) is some constant. Note that for any :
sufficiently small step in a descent direction d, , (4.2.1) is satisfied for any a < 1. The second condition is F
that the step is not too short. The equation -
Vix)Ts: 2 B VS (x 7 se 4.22) "

is most commonly chosen to implement this condition, where B € (a,1); it says that the step must be long '_.
enough so that the directional derivative increases by some fixed fraction of its original magnitude. b
A

Z
3

(4

e LW “w e m ’




.
R}'"'

The main value of equations (4.2.1) and (4.2.2) is that incorporating them into a line search algo-
rithm leads o a practical and globally convergent method. Theorem 4.2.1 says that given any descent
direction d, and 0 < a < B < 1, it is always possible to choose ¢, > 0 so that x, = x, + . d, satisfies (4.2.1)
and (4.2.2) simultaneously. Theorem 4.2.2 says that if every iterate is chosen in this way and the directions
d. are selecied reasonably, the method will be globally convergent. For proofs of these theorems, see

Wolfe {1969,1971] or Dennis and Schnabel [1983].

Theorem 4.2.1 Let f : R*"—R be continuously differentiable and bounded below. Let x, € R*, d, € R
satisfy Vf (xu)Tde<0. Then if 0 < <P <1, there exist 0 <t; <2 such that for any « € [f, 2],
Xpo) = Xk + e de = X + 5 satisfies

f@ra)<f@)+a 9 (x) s 4.23)
and

Ve (ar) se 2B VS (xa ) se . 4.2.9)

Theorem 4.2.2 Let f : R*—R be continuously differentiable and bounded below, and assume Vf (x) is
Lipschitz continuous in R*. Given xo€ R", suppose the sequence {xi] is defined by xse1 = x¢ + do,
k =0.1,..., and that there exists >0 such that for each & >0,

Vf (xe )T.fk <= "Vf )l 2 Itsy 11y 4.2.5)
and (4.2.7° (4.2.4) are satisfied. Then either Vf (x,) = 0 for some &, or ‘h_rln_ Vi(xa)=0.

The only restriction in Theorem 4.2.2 that we have not yet discussed is equation (4.2.5). This simply
says that each step direction must be a descent direction where in addition, the angle between s. and the
negative gradient is less than some fixed angle less than 90° . For example, if sy = -H,™' Vf (x*) where H,
is V2f (x;) or any approximation 10 it, then (4.2.5) is satisfied if the condition numbers of 4, are uniformly
bounded above. This is not a big restriction in practice although not all methods can be shown to enforce it
in theory.

Other conditions can be substiwted for (4.5) and still allow Theorem 4.2.1 and 4.2.2 to hold. A com-

mon subsuttion for (4.2.2) is

IVf(x)Tsc | S BIVS () s | (4.2.6)
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again with B € (a,1) ; as B — 0, (4.2.6) causes x. to approach a minimizer of f (x) along the line in the po!
direction d. from x. . Another substitution for (4.2.2) which causes our theorems (o remain true is i—
FG) 2 )+ YV () se :
for some ye (0,0) .
Note that (4.2.2) (or (4.2.6)) and Vf (x.)Td, < 0 imply A
(Vf (5 - Vf (= )se 2 (B-1) Vf (x)7s. > 0 .
which is the condition (3.4.3) that we saw is necessary and sufficient for the existence of symmetric and ;_
positive definite secant updates. Thus by enforcing (4.2.2) or (4.2.6) in a BFGS method, we also ensure :'
that it is possible 1o make a positive definite update at each iteration. :‘_t
Two practical issues remain in applying Theorems 4.2.1 and 4.22 0 obtain a practical line search :.:
algorithm : the choices of the step direction d. , and the efficient calculation of the step length . to satisfy '
(4.2.1) and (4.2.2). In addition, we need to show how we retain the fast local convergence of the methods E"
discussed in Sections 2 and 3. «:.
Our methods are based upon the quadratic model (4.1.1) where H, = V2f (x, ) or an approximation to '
it. When H. is a BFGS approximation, then it is positive definite and line search methods use :
d. =-H:' Vf(x.) . We saw in Section 4.1 that this d. is always a descent direction. Generally BFGS :E
based line search methods do not explicitly enforce (4.2.5); it can be shown 10 be true in theory under cer- ‘ :‘.
tain assumptions (se¢ e.g. Broyden, Dennis and More [1973], Powell [19767]). v '
When H. = V2f (x.) or a finite difference approximation to it, then M, may or may not be positive E 4
definite. The standard practice, due to Gill and Murray [1974] is 10 attempt the Cholesy factorization of H, *
in such a way that the result is the factorization L. L[ (or L. D.L[) of (H, + E.). Here L, is lower triangu- <
lar, D, is positive diagonal, and E; is a non-negative diagonal matrix which is zero if H. is positive ‘E:
definite and not wo badly conditioned. Then d, is obtained by solving L.LJd. =- Vf (x.) , so that Q
d. =—(H. +E.)" Vf(x.) . Thus d, is the Newton direction if H. is safely positive definite, as it will be :‘;
near a strong local minimizer and usually at most other iterations as well. Otherwise 4, is some descent S
direction related to the Newton direction. In all cases, the cost of the factorization is only O(n%) operations E\
more than a normal Cholesky factorization, d. obeys (4.2.5), and the size of E, is bounded in terms of the .'
size of /1. . Schnabel and Van Vleck [1987] recently have devcloped a new version of this modified ;
3
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Cholesy decomposition which appears o reduce the size of E. while improving the condiuoning of
H.+E..

Thus any line search method, whether it chooses H. to be the Hessian or a BFGS approximaton 10
it, will use d, = =H,.™! Vf (x.) as the search direction in the neighborhood of 2 minimizer x. where V2f (1. )
is positive definite. If the steplength 1. = 1 is permissible, this means that the global convergence results of
this section are consistent with the fast local convergence of Sections 2.2 and 3.4. Theorem 4.2.3, due 10

Dennis and More [1974], shows that this is the case as long as a < :l,'- in (4.2.1).

Theorem 4.2.3 Let f : R* — R have a Lipschitz continuous Hessian in an open convex set D . Consider a
sequence x; generated by Xis; =xp + ade, Where Vf (x,)7d; <0 for all k and ¢ is chosen w sausfy
42.) withac é— ,and (4.2.2). If x, converges to a point x. € D at which Vf (x,) is positive definue,

and if

. v w2 Il
P_".l f (xe) ?l.d,,ﬂf GOl _ 0. @27

then there is an index ko 2 0 such that for all k 2 ko, & = 1 is admissible. Furthermore, Vf (x-) =0, and if

4 =1forallk 2ko,then { x, } converges ¢ -superlinearly to x. .

If exact Hessians are used, d; will be ~V2f (x,)™! Vf (x;) for all x; sufficiently close 10 xo, so that
(4.2.7) is trivially true and quadratic convergence is achieved by using ; =1 . In a BFGS method. the
analysis of Broyden, Dennis, and More [1973] or Powell [1976] shows that (4.2.7) is true so that ¢-

superlinear convergence can be retained.

From Theorem 4.2.3, we see that to combine fast local convergence with global convergence, a prac-
tical procedure for selecting the steplength 1. should always try ¢, = | first (at least near a minimizer) and
use it if it is admissible. Beyond this, experience has shown that a practical procedure for choosing 1, (o
satisfy (4.2.1) and (4.2.2) should aim to be as efficient as possible, in that it chooses a and B so that there is
a wide range of points satisfying (4.2.1) and (4.2.2), and uses the first point that it finds in this range rather
than trying o closely approximate the minimizer of f (x) along the line x, + ¢ d.. Many strategies for
accomplishing these goals efficiently have been proposed, and probably every line search that is coded 15

unique in some way. Algorithm 4.2.1 indicates the structure of a representauve linc search.
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There are four possible stages in this line search. If ¢, = 1 sansfies both (4.2.1) and (4.2.2). then x., =
xc +d., and no further line search calculations are performed. If 1, = 1 is not admissible because it fails
(4.2.1), then ¢, will be decreased. This is most often done by safeguarded quadratic interpolation. In this
procedure the minimizer t,, of the one-dimensional quadratic approximation ¢ (1) 10 f (x. + . ) that inter-

polates f (x.) . Vf (x.)7d, ,and f (x. + . d.) is calculated by

- -’¢2 VfCTdc n
W kd) T &)~k VT &T 4.28)

and the next stepsize is then set 10 max (tw,cif. }, where typically ¢; = 0.1 . (It can be shown that
lm > 1 /2(1-a)). This Init-Decrease stage may be repeated one or more times if the new x, +1.d. continues

w fail (4.2.1). Sometimes a form of safeguarded cubic interpolation is used instead in this stage; see e.g.
Dennis and Schnabel [1983].

Alternately, if 1. =1 satsfies (4.2.1) but not (4.2.2), 1, will be increased. Generally a simple rule like

t=2l is used aithough more sophisticated strategies are possible. This Init-Increase stage also may be

Algorithm 4.2.1 Line Search Structure
Given f (x): R"9R, x, f (x.),Vf (x.) , descent direction d,

tlow =0, tup =, done = false, 1, =1
Repeat
evaluate f (x. + 1. d.)
If x. +t.d. sausfies (4.2.1) then
evaluate Vf (x. +t.d.)
If x. +t1.d, satisfies (4.2.2) Then

done = true
Else

tow =1,

If tup = oo then

t. .= Int-Increase (1)
Else ¢, = Refine (i, tlow, tup)
Else
up =i,
If tiow=0 then
t. = Init-Decrease (1)
Else 1 := Refine (¢, tlow , wup))
Until done = true
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repeated if x. + f.d. continues to satisfy (4.2.1) and fail (4.2.2).

After one or more repetitions of either the Init-Increase or Init-Decrease phase, either an admissible
x. +t.d. is found, or it must be the case that the last two values of . that have been tried bracket an
acceptable value of 1. That is, the one with the lower value of t., tlow must satisfy (4.2.1) but not (4.2.2),
while the one with the higher value of 1., fup , must fail (4.2.1). In this case an admissible (. must be in
(tlow, tup), and it is identified by the final, Refine, phase of the line search. Let & = up - tlow. A typical

Refine phase would calculate

8 Vf (tow )T d,
S (up }—f (tlow) = 8 VS (tow)Td,

the minimizer of the one dimensional quadratic intcrpolating f (tlow ), Vf (low)Td,, and f (1up), and then

tm = tlow ~

set 1, =min{max (i, , tlow+c 28} Jup—c28) where typically ¢ »=0.2. This phase may also be repeated one or

more times.

In theory it can be shown that our line search tcrminates in a finite number of iteratons. In practice,
very little work usually is necessary. Experience has shown that line search algorithms with relatively
loose tolerances generally produce algorithms that require fewer total number of function and derivative
evaluations to reach the minimizer than algorithms with tight tolerances. Typical line search algorithms set
a = 10™ in (4.2.1), so that virtually any decrease in f (x) is acceptable. and B between 0.7 and 0.9 in
(42.2), so that only a small decrease in the magnitude of the directional derivative is required. Due to
these tolerances, /. = 1 is admissible much of the time, and when it is not, generally one or at most two
more values of . must be attempted. Thus the three procedures described above, Init-Decrease, Init-

Increase, and especially Refine, are used only infrequently.

The above line search is related to the ones described by Shanno and Phua [1978b], Fletcher [1980],
Dennis and Schnabel {1983}, and many other authors. Many line searches have been proposed, especially
variants that deal diffcrently with the case when the Hessian is indefinite; see e.g. McCormick [1977],
More and Sorenson [1979]. Some line searches only allow 1. <1 and only enforce (4.2.1); in this case
Algorithm 4.2.1 is much simpler as the Init-Increase and Refine stages and the check for (4.2.2) are elim-
inated. The techniques of Shultz, Schnabel, and Byrd [1985] show that such a line search still leads to a

globally convergent algorithm, but satusfaction of the condition (3.4.3) for posiuve definite secant updatecs
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is not guaranteed. Finally, some line search algorithms do not start with 1. =1 if the previous step was very

short; good strategies for doing this are closely related to the trust region approach that we discuss next.

43 Trust Region Methods

Trust region methods are the other main group of methods for ensuring global convergence while
retaining fast local convergence in optimization algorithms. The fundamental difference between line
search and trust region methods is how they combine the use of the quadratic model with the choice of the
step length. We saw in Section 4.2 that in a line search method, the quadratic model m. (x. + d) given by
(4.1.1) is used to obtain a search direction d.=-H.'g. (or -(H. + E.) g, if H. is not positive definite),
and then a steplength is chosen. The procedure for choosing the steplength does not make further use of

the Hessian (approximation) H, .

A trust region method takes the different philosophy that one first chooses a trial step length 4, , and
then uses the quadratic model to select the best step of (at most) this length for the quadratic mode! by solv-

ing

minimize mc (xc +s)=f (x) + Vf(x)s + slstHcs

subject to Ils Il € A,

The trial step length A, is considered an estimate of how far we truss the quadratic model, hence it is called
a trust radius and the resultant method is called a trust region method. We will see below that A, is closely
related to the length of the successful step at the previous iteration, and may be adjusted as the current
, iteration proceeds. First we describe the solution to (4.3.1) in Theorem 4.3.1. An early proof of much of
Theorem 4.3.1 is given in Goldfeldt, Quandt, and Trouer [1966]; other seminal references include Gay

[1981] and Sorensen [1982)].

Theorem 4.3.1 Let g. = Vf (x.)eR*, H.e R** symmetric, A; > 0. Let A€ R denote the smallest eigen-
value of H, and let vie R" denote the corresponding eigenvector. Then i H, is positive definite and
IHg NS A, sc=~H g, is the unique solution 10 (4.3.1). Otherwise the solution to (4.3.1) sausfies

lls. l=A, and
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(H + H</)Sc=‘8c
for some . 20 where H, + ./ is at least positive semi-definite. Furthermore either H, + p. ! is positive

definite and

Se=—(H. + 1) g, 4.3.2)

for the unique u. > max {0,-A,) for which lis li=A, , or pe = —A, and
se=—(H. - )\ll)*gc + Wy, 4.3.3)
where + denotes the Moore-Penrose pseudouniverse, and weR is chosen so that llsc Il=A. . If H. is positive

definite, the solution must be given by (4.3.2); the case (4.3.3) only occurs if H. is indefinite and

WH, +pel) gl < A, forall e 2 A, .

Theorem 4.3.1 indicates several differences between the step taken in line search and trust region
methods. From (4.3.2) we see that, even if H, is positive definite, the trust region step is not always in the
Newton direction —H:'Vf (x.) . In fact, it is straightforward to show that for all p 2 max {0,-4, },
WH, + W) 1Vf(x. )l is a monownically decreasing function of w. Thus as A.—0, p—eo, and
—H, + W )Y'Vf (x.) = -Vf (x. )/ Therefore for small A., the trust region step is nearly in the steepest
descent direction, while as A, increases, the trust region step approaches and ultimately becomes the New-

ton step —H 'V (x.) as long as H, is positive definite. This is depicted in Figure 4.3.1.

-Vf (xe xe~(He+H )'Vf (x.)

x.~H: Vf (x:)

Figure 4.3.1 The trust region curve
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A second difference between line search and trust region methods is how they deal with the case
when M. is not positive definite. Since the minimization of an indefinite or negative definite quadratic
model is not mathematically well-posed, a line search method must perturb a non-positive definite Hessian
to be positive definite, as was seen in Section 4.2. On the other hand, the minimization of such a model
within some closed region is well defined and reasonable, and this is what the trust region method does.

Ingeed, even if x. is a maximum or saddle point, (4.3.1) is well-defined with a soluton given by (4.3.3).

The above discussion indicates two attractive properties of trust region methods. First, small steps
are in the sieepest descent direction, the best direction for sufficiently small steps, while the Newton step is
used when it is within the trust region and H, is posiuve definite, thereby hopefully preserving fast local
convergence. We will see that this property is retained by all the practical approximations to the ideal trust
region step that are discussed later in this section. Second, the trust region method deals namrally with
indefinite Hessian matrices. This will be seen to lead to stronger convergence results than were possible

for the line search methods of Section 4.2.

On the other hand, the ideal trust region step described in Theorem 4.3.1 is difficult to calculate. The
main difficulty is that there is no closed formula that gives the unique u. 2 max {0,-A,} for which
WH, + uI)'Vf (x.)ll=a, . Instead, this 4, must be calculated by an iterative process with each iteration
requiring the Cholesky factorization of a matrix of the form H, + W . In contrast, the line search metnods
of Section 4.2 require only one matrix factorization per iteration. Furthermore, it is possibie that the step
(4.3.3) will be required which necessitates an eigenvalue-eigenvector calculation. This case is rare, espe-

cially in finite precision arithmetic, but in cases that are close to this the calculation of (4.3.2) becomes

more difficult.

For these reasons, efficient computational implementations of trust region methods solve (4.3.1)
approximately. Before we present these approximate solunon methods, we discuss the overall schema of a
trust region method including the adjustment of the trust radius A., and the convergence properties of a
method that uses this schema while solving (4.3.1) exactly. This theorem will help justify our continued
interest in these methods. We will then see that these convergence properties are retained when using van-

ous efficient, approximate trust region steps in place of the exact solution to (4.3.1).
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%
After the trust region s, is calculated, a trust region method must evaluate f (x. + s.) 1o see whether -3
x. + 5. is a satisfactory next iterate. It may not be if the quadratic model does not accurately reflect f (x) f_
within the trust region. In this case the trust radius is decreased and the trust region step recalculated. Oth- N
2rwise, x. + 5. becomes the next iterate and the new trust radius must be calculated. Such an approach is J
g
outlined in Algorithm 4.3.1. '
" )3
b
The reader will recognize the step acceptance condition \ '
<4
actual —reduction < oy (predicted—reduction) (4.3.4) i
as being very similar to the sufficient decrease condition (4.2.1) used in line search algorithms. The only A
.h
difference is that the second order term -lIsZHc s. is included on the night hand side of (4.3.4). Again, <
;=10 is typical. No analog to condition (4.2.2) is needed by trust region methods because the strategy '{
for adjusting the trust radius prevents the step from being too short. i‘
>
If (4.3.4) is failed, the current iteration is repeated with a smaller trust radius. The procedure for - y
decreasing A, is similar or identical to the procedure Init-Decrease for decreasing ¢, in a line search.
‘f
“n
Algorithm 4.3.1 Trust Region Iteration : '
<
Given f : R*—R, x., f (xc), Vf (x.) , Hessian (approximation) H, , o
trust radius A, > 0, O<ay<ay<l, 0<c<ca<1<ca<cs "
done = false .‘
Repeat
Se = exact or approximate solution to (4.3.1) ,{:
evaluate f (x. +5¢) .;
actual —reduction = f (x. +5.) - f (x¢) .
predicted—reduction = Vf (x.)Ts. + -é-ScT 7
If actual-reduction S 0 predicted—reduction Then ,:_
done := true R
X4 =X, + S, "
If actual ~reduction < o predicted-reduction Then o
A, := Increase-A (A.) (*Aumem{cs, caA; ®) Y
Else A, := A, (*orAmem(c,, 114 *) .
Else A, := Decrease-A (A, ) (* newA.mem[c,,c2JoldA; *) B
Until done = true .
e

Padu
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Typically, quadratic interpolation (equation (4.2.8)) with a safeguard such as new A. € [0.1, 0.5] oid A, is
used.

If (4.3.4) is satisfied, x. + 5. is accepiable as the next iterate x., and the new trust radius A, must be
determined. Algorithm 4.3.1 increases A, over A, if the quadratic model and function have agreed quite
well; the condition actual-reduction < oy (predict—reduction) tests this with a=0.75 typical. Some
methods instead allow the current iteration to be continued with this larger trust radius in this case, which
complicates the description considerably and doesn’t affect the theoretical properties. This may help in
practice by saving gradient evaluations. In either case, the Increase-A procedure usually doubles A, , analo-
gous to the Init-Increase portion of the line search. Otherwise, A=A, in Algorithm 4.3.1. Some methods
may set the new A, < A, if agreement between the actual function and the model was rather poor, for

example if (4.3.4) was failed with oc=0.1. This also does not affect the method’s convergence properties.

Theorem 4.3.2 gives the main global and local convergence properties of a method based on the trust
region iteration of Algorithm 4.3.1, in the case where (4.3.1) is solved exactly. Similar results may be

found in many references including Fletcher [1980], Gay [1981), and Sorensen [1982].

Theorem 4.3.2 Let f : R* — R be twice continuously differentiable and bounded below. Also, for xoe R*
and some B;,B2>0, let V2f(x) be uniformly continuous and satisfy IVZf(x)I<PB, for all
x€{x€R" : f(x) < f(x0)} . Let (x:) be the sequence produced by iterating Algorithm 4.3.1 starting from
X0, and using H.=V2f (x.) or any symmetric approximation with IIH, Il < B, at each iteration, and the exact
solution to (4.3.1) to calculate d.. Then ‘h'_x.n_IIVf (x)l=0 . If in addition each H.=V2f (x.) , then for any
limit point x. of the sequence {xi], Vf (x« }=0 and V2f (x. ) is at least positive semi-definite. Furthermore

if each H.=V2f (x),then if (x:} converges to x., V2f (x-) is positive definite, and V2f (x) is Lipschitz

continuous around x. , then the rate of convergence is ¢ -quadratic.

Theorem 4.3.2 shows that a trust region method that solves the trust region problem exactly has
attractive convergence properties. The same first order result is established as for line search methods, and
no assumption about the condition number of H, is necded. In addition, if exact second derivatives are
used, then the second order necessary conditions for a minimum are satisfied by any limit point, which

means that saddle points and maxima are avoided. The analysis also shows that near a local minimum with
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o
V2f (x.) positive definite, asymptotically the trust region constraint becomes inactive so that only Newion
steps are taken and local quadratic convergence is retained. ‘:
These nice convergence properties help motivate the interest in trust region methods which follow A
the general schema of Algorithm 4.3.1, but where the step is calculated by a considerably more efficient . A
procedure than that required for the exact solution of problem (4.3.1). There are two obvious relaxations to 3
problem (4.3.1) that may make it easier to solve : the trust region constraint may be satisfied only approxi- -
mately, and/or the quadratic model may be minimized only approximately. We will see that both may be F,;
relaxed substantially without weakening the theoretical properties of the method. ;-
In fact, two general classes of efficient methods for approximately solving (4.3.1) have arisen, '_
corresponding to these two possible relaxations of (4.3.1). In the first, approximate optimal step methods, ._
mainly the trust region constraint is relaxed; the step generally is still of the form ~(H. + W )™'Vf (x.) for '
some positive definite H, + /. These methods are summarized below. In the second, dogleg methods, the
minimization of the quadratic model is relaxed; we defer the consideration of these methods until later in ‘ f:
this section.
Hebden [1973] and More [1978] were the first to construct efficient approximate optimal step '
methods. They developed an efficient procedure for finding a 1 > 0 for which J
WHe + W)V (2 M~ A, 43.5) 7
in the case when H, is positive definite and IH VS (x. )l > A, . Their algorithms are based on applying N
Newton’s method in .10
L -1 -
TH, i) Vi A (4.36) =
following the observation that (4.3.6) is more nearly linear in p near the desired solution than is (4.3.5). A'\-
This results in the p-iteration :‘:"
2 _ :
b = B T S ) (#37) ',
where 5. = —(H. + W )"'Vf (x.), which requires one factorization of a matrix of the form H, + W for each E‘i
M-iteration. Typically the trust region constraint is relaxed to lls. lle [0.9, 1.1] A, ; then usually only onc or ;"
two iterations of (4.3.7), and the same number of matrix factorizations, are required for each iteraton of g i
the optimization algorithm. .,-“
%
R e e e N T T A A T T ATATATNIN A ‘_\.::




* got gaV 3 3

e T S R
15 Ko W\ RaCW,

(KRR RN RN Y N Y Ve i a6 'adtadbacd s e s e dba s A’ ‘e 4's Bz 4%a 2'8. 2% B's A Yo Bts Aia AVa A2 aV. AL
3 4 g

55

Several authors, including Gay [1981), Sorensen [1982], and More and Sorensen [1983], have inves-
tigated generalizations of these approximate optimal step methods that extend to the case when H. is
indefinite. More and Sorensen present an efficient algorithm that guaraniees that their approximate solu-
tion to (4.3.1) reduces the quadratic model m, (x. + 5) by at least ¥ times the amount that the exact solution
to (4.3.1) would, for any fixed y < 1. Their algorithm combines the Hebden-More procedure mentioned
above with a use of the LINPACK condition number estimator 1o obtain a satisfactory solution when the
exact solution is in or near the "hard case" (4.3.3). No eigenvalue/eigenvector calculations are required.
They show that their method still generally requires only 1-2 matrix factorizations per iteraton, and that it

retains the convergence properties of Theorem 4.3.2,

The analyses of these approximate optimal siep methods are subsumed by Theorem 4.3.3 below, due
to Shultz, Schnabel, and Byrd [1985]. Similar first order results are proven by Powell [1970, 1975] and
Thomas [1975). Details of the interpretations that are given following Theorem 4.3.3 are also found in
Shultz, Schnabel, and Byrd [1985].

Theorem 4.3.3 Let the assumptions in the first two sentences of Theorem 4.3.2 hold. Let {x:) be the
sequence produced by iterating Algorithm 4.3.1 starting from x¢ , using H.=V2f (x.) or any symmetric

approximation with IIH,. Il S B; at each iteration. If there exist ¢, ¢ > O such that each 5. satisfies,

Vf () sc + 5THe 0 S~ c1llVf ()Ml min (4, S2vg Gy 4.3.8)
7z THT

then gl_lll. HVf (x,)I=0 . If in addition each H,=V2f (x. ) and there exists ¢ 3 > 0 such that each d, satisfies

Vf (e )Tse + % sTHe se S ~cs(-M(H, A2 39)
where A,(H.) denotes the smallest eigenvalue of H, , then for any limit point x» of {x;) , Vf (x+ )=0 and
V2f (x-) is at least positive semi-definite. Also, if each H.=V2f (x.), each s. satisfies (4.3.8), and there
exists cq4 € (0, 1] such that 5, =—H'Vf (x.) whenever H, is positive definite and IH-1Vf (x )l € c4.
then if {xi ) converges (o x- with V2f (x. ) positive definite and V2f (x) Lipschitz continuous around x.,

then the rate of convergence is ¢ -quadratic.

Theorem 4.3.3 contains two equations, (4.3.8) and (4.3.9), that say what conditions a trust region stcp

needs to satisfy in order to be globally convergent to points satisfying the first and second order necessary
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conditions for minimization, respectively. Equation (4.3.8) gives a condition on the sufficient use of des-
cent directions in order to assure first order global convergence. With c;=7l- and cz=1, it implies that the

step s. provides at least as much decrease in the quadratic model as the best permissible step in the steepest
descent direction. (Here "permissible” means "obeying the trust region constraint™). This interpretation
forms part of the motivation for the dogleg methods for approximating (4.3.1) that are discussed below. By
using smaller ¢ and ¢, in (4.3.8), condition (4.3.8) says that each 5. provides at least a fixed fraction of the
decrease in the quadratic model that would be obtained by the best permissible step in some direction p, of
"bounded” descent (i.e. the angle between p, and Vf (x.) is uniformly bounded above by a constraint <

90°). This is all that is needed to assure lli_r.r-n_(Vf (x¢)}=0 . Thus Theorem 4.3.3 also applies o a line search
method where the trust region bound A, is used 1o determine the steplength.

Equation (4.3.9) gives a condition on the sufficient use of negative curvature directions that, in con-
junction with (4.3.8), assures global convergence to a point satisfying second order necessary conditions
for minimization. Equation (4.3.9) can be interpreted as saying that, whenever H, is indefinite, s. provides
at least a fixed fraction of the reduction in the quadratic model that would be obtained by the best permissi-
ble step in some direction v, of "bounded” negative curvature (i.e. (vTH,. v, )/(AvIv.) is uniformly bounded
below by a fixed positive constant). This constitutes a considerable relaxation of the "hard case” (4.3.3) in

the exact solution of (4.3.1).

Thus any trust region method that uses the schema of Algorithm 4.3.1 and chooses its steps to satisfy
conditions (4.3.8-9) has strong global convergence properties. It is straightforward to show that (4.3.8-9)
implies the condition on a trust region step used by More and Sorensen [1983], that the reduction in the
quadratic model by s. be at least a fixed fraction of the reduction from solving (4.3.1) exactly. The con-
verse is only true under swonger assumptions on H, (see Byrd, Schnabel, and Shultz [1987]). Now we
return to the second class of methods for approximately solving (4.3.1), dogleg methods, which arc now

easily seen as another way to satisfy conditions (4.3.8-9).

The earliest trust region method, of Powell [1970], is the original dogleg method. Given a quadratic
model m, (x. + s) with 4. positive definite, and A, > 0, it selects x, + 5. 10 be the Newton point xy =

x. = H-'Vf (x.) if it is inside the trust region. Otherwise it selects x. + 5. to be the point on the piecewise
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N
linear curve connecting x., xc,, and xy which is distance A, from x.. (See Fig. 4.3.2.) Here x¢, is the .'
Cauchy point, the minimum of the quadratic model in the steepest descent direction —Vf (x.) from x.. (It _{*
is straightforward to show that llxc, — x| < llxy - x. Il, so that the intersection of the dogleg curve with the } (
trust radius is unique.) Dennis and Mei [1979] constructed a generalization, the double dogleg method, -'
which selects x, + 5. 1o be the unique point on the piecewise linear curve connecting X, xc,, Yxv, and xy R,
which is distance A, from x. , or x. + 5. = xn if xy is inside the trust region, for a particular y< 1. For J
either method, it can be shown that as one moves along the piecewise linear curve from x. 10 xy, the dis- “—
tance from x. increases and the value of the quadratic model decreases. 2

RN,

Thus these dogleg methods take small steps in the steepest descent direction when the trust radius i-
small, take Newton steps when the trust radius is sufficiently large, and take steps in a linear combination E
of the steecpest descent and Newton directions otherwise. Due to the use of steepest descent steps when A,
< lxcp, —x. 1l and to the monotonic decrease of the quadratic model along the entire dogleg curve, they \\;
always obtain at least as much descent on the quadratic model as the best steepest descent step of length at :E
most A.. Thus they obey (4.3.8) and by Theorem 4.3.3 are globally convergent in the sense that the .
sequence of gradients of the iterates converges to zero. :‘

-Vf (xc)

~ ~- xv=x.~-H:Vf (x.)

s
&
Vv b

X o

Figure 4.3.2 The dogleg curve
(dotted part is double dogleg modification)
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An attraction of these dogleg methods, in comparison 0 the approximate optimal step methods dis-
cussed above, is that they only require one matrix factorization (of H, ) per iteration. All the remaining cal-
culations are easily seen o require at most O (n2) operations, and no additional factorizations are required
if the trust region must be decreased during the current iteration. On the other hand, neither version
described above makes explicit use of an indefinite H, or satisfies (4.3.9). Thus no second order global

convergence results can be proven foi them.

These dogleg methods are closely related to minimizing the quadratic model m, (x. + s.) over the
two dimensional subspace spanned by the steepest descent and Newton directions, subject to the trust
region constraint. This two dimensional trust region problem also is easy to solve using oniy the factoriza-
tion of H., and the inclusion of the steepest descent direction assures satisfaction of (4.3.8) and hence first
order global convergence. Shultz, Schnabel, and Byrd [198S] propose an algorithm along these lines
where, if H, is indefinite, the two dimensional subspace is changed to the one spanned by -Vf (x.) and
some direction of bounded negative curvature which is fairly efficient to compute. Thus the algorithm
obeys (4.3.9) as well and has the same theoretical convergence properties as an approximate optimal step
method. Byrd, Schnabel, and Shultz show that an optimization algorithm based on this approach is very

competitive with a modern approximate optimal step method in robustness and efficiency.

In practice both approximate optimal step methods and various dogleg methods are used in solving
unconstrained optimization problems and in other contexts. Some additional comments on their relative

merits are contained in Section 4.4.

4.4 Comparison of Line Search and Trust Region Methods

Sections 4.2 and 4.3 have presented two classes of methods, line searches and trust regions, for
obtaining globally convergent unconstrained optimization methods while also retaining fast local conver-
gence. The reasons for presenting both approaches arc that neither appears to be consistently superior 0
the other in practice, that both are used in modern software, and that both can be expected o play imponant

roles in the future development of optimization methods. This section elaborates briefly on these remarks.
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Gay [1983] and Schnabel, Koontz, and Weiss [1985] have conducted comparisons of line search and
trust region codes on a standard set of test problems from More, Garbow, and Hillstrom [1981]. Gay com-
pared a BFGS method utilizing a line search with a BFGS method using a double-dogleg trust region step.
Schnabel, Koontz, and Weiss tested methods using finite difference Hessians and methods using BFGS
approximations, in both cases comparing line search, double-dogleg, and approximate optimal trust region
steps. Both studies showed that while there can be considerable differences berween the performance of
line search, dogleg, and optimal step methods on individual problems, no one method is consistently more
efficient or robust than any other. Indeed, the average differences in efficiency between the line search and

trust region methods tested were quite small, and they had similar success rates.

In modern numerical software libraries, one finds both line searches and trust regions used in con-
junction with both (finite difference) Hessians or BFGS approximations. Philosophically, some people
prefer to use line searches in conjunction with BFGS methods because the necessary condition (3.4.3) for
positive definite updates can be guaranteed to be satisfied at each iteration; in trust region methods no such
guarantee is possible and occasionally (3.4.3) is not satisfied and the update must be skipped. Similarly,
some people advocate using trust region methods in codes where the (finite difference) Hessian is used,
because a "natural” treatment of indefiniteness is possible and it can be guaranteed that saddle points and
local maxima are avoided. But as the previous paragraph has indicated, neither of these theoretical argu-

ments has been shown to correspond to any significant computational advantage.

Algorithm developers in areas such as constrained optimization, least squares data fitting, and large
scale optimization often need to choose between using line searches or trust regioas in developing new
codes. Some trade-offs are fairly consistent. Line searches often are a little simpler to code, but sometimes
it is not clear how to deal with indefiniteness, rank deficiency, or other factors that may cause the line
search direction to be in an unacceptable direction. Trust region methods often offer a mathematical solu-
tion to these problems, but usually require some additional linear algebra cost. In additon it sometmes is
challenging to construct efficient, approximate solution algorithms for the appropriate trust region problem.
The result is that both approaches arc used; for example there currently is considerable research activity in
both line search and trust region methods for nonlincarly constrained optimization. The two-dimensional

trust region technique mentioned at the end of Section 4.3 scems to offer a good compromise In cases
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where the trust region approach seems desirable to assure acceptable step directions, but an (approximate)

optimal solution to the exact trust region problem is very difficult or expensive to find.

Y

One case where there appears to be a discernible difference between line search and trust region

methods is in Gauss-Newton methods for nonlinear least squares (see Section 6.2). In this case the under-

N Ty

lying local method is at best linearly convergent on most problems. For such algonthms, trust region algo-

rithms, which may be viewed as combining two linexrly convergent directions, the standard Gauss-Newton

s = =

direction and the steepest descent direction, appear generally to be more robust and efficient than line
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search algorithms which only use the Gauss-Newton direction. For a detailed discussion of such algo-

rithms, see Dennis and Schnabel [1983], Ch. 10.
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5. Non-Taylor Series Metbods

This section presents two fundamentally different algonthmic approaches that have proven them-
selves useful for unconstrained minimization. First, we will describe the Nelder-Mead simplex algorithm,
Nelder and Mead [1965], an effective pattern search technique for problems of very low dimension which
is beloved of users but generally ignored by optimization researchers. Then, we will provide a unifying
framework for the proliferaton of conjugate direction algorithms that have been devised for solving prob-

lems with large numbers of variables.

5.1 The Nelder-Mead Simplex Algorithm

The Nelder-Mead algorithm moves a simplex through the domain space with the goal of getting the
function minimizer x, in the interior of the simplex. Once ad hoc tests indicate that the minimizer has been
surrounded, the algorithm shrinks the simplex toward the vertex corresponding to the lowest function value

and returns to the process of trying to get x, into the interior of the (smaller) simplex.

We will confine ourselves here 10 a description of the four basic moves of the algorithm. Each itera-
tion begins with a set of n +1 current points x.,....x2*' in general position, i.e., the convex hull S, of
{x!,....x2*!} is an n-dimensional simplex. Furthermore, these vertices are assumed to be sorted on their
objective function values so that f (x{)<f (xé*Y), i =1,....n. The first goal of each iteration is to replace
the worst vertex x2*! with a better one by moving the simplex away from x2*!. If this fails, we tacidy
assume that we are close enough to the minimizer to need smaller moves for improvement. Thus, we keep
the best vertex and shrink the simplex along each edge by replacing each of the other vertices by its aver-
age with the old best vertex. We then evaluate f at the n new vertices and sort and label them to obtain
S.=<xl,...x2*'>, The convention we use is that the older vertex is numbered lower when two vertices

have equal function values.

We have described the shrinkage step through which the algorithm tnes to close in on x,; now wc

describe the moves aimed at getting the larger simplex close by moving away from the worst vertex.
The first trial step in each iteration is to consider the reflection x/=2x, —x2*' of x2*! through the

centoid x, = % tx“ of the best n-face of S.. If success is so great that f (x/) < f (x/'), then we trv
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expanding the simplex in the same direction by testing f (x¢) < f (x.!), where x#=2x/ —x2*!. If the expan-
sion is successful, we drop x2*! in favor of x¢, otherwise we drop x**! in favor of x7, and sort the vertices
o obtain S,. There are two things 10 note about a successful expansion step. The first is that we do not
conunue in the same vein even if f (xf) < f (xZ) < f (x). This is because we want 10 avoid a simplex that
gets elongated enough that its vertices are not numerically in general position. The second point is that we
accept the expansion vertex even if it is not as good as the reflection vertex. Thus, the best approximate
minimizer we have found so far might not be retained as a vertex. This is in keeping with our view of try-

ing to move the simplex over the minimizer before we start to close in on it.

The reflection vertex is taken without an expansion attempt if f (x.!) < f (x7) < f (x#). In this case, x2

will become x3*! after sorting. If f(x))2f (x2*!), then we try once 10 contract the simplex internally
along the reflection direction by testing f (x¢) < f (x2), where the contraction vertex is xf = 21'[“—‘ x4 If

the conrraciion fails, then we shrink the simplex as explained above. If it succeeds, then we replace x2*!

by x¢ and sort to prepare for the next iteration.

There is one more possibility to consider for the trial of a reflection step. If f (x2)<f (xI) < f (x2*h),
then we can see immediately that if we replace x?*! by xZ, the outcome would be that x3*! would be x/
and that the subsequent reflection step would be rejected, because x4 =x2*1, in favor of a trial contraction.

Thus, we pass over this ‘shadow’ iteration and compute the indicated snadow contraction directly from the

current vertices as x.- = é-(x: +x.). We finish the iteration exactly as we did for a regular contraction.

Many users have suggested minor modifications of this algorithm. The best known modifications
and the history of the algorithm are collected in Woods [1985]. Woods also gives a novel application of
one of the three major advantages of the algorithm. He applies the algorithm to multicriteria optimization
by exploiting the fact that we only use the objective function f to decide which is the 'better’ of two ver-
tices. In common use, this indicates that the algorithm should be robust with respect 10 noise or inaccura-
cies in the values of f. For example, we have experience with an engineer who was able ¢ use it w

resolve parameters 10 .5% after only reaching 5% resolution with a standard finite-difference Newton code.

The three main strengths of the Neldcr-Mead simplex method are its tolerance of function noise, its

nonreliance on any gradient approximations, and the extreme simplicity of its implementation. It takes less
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than 100 statements to implement in any high level language, and this is an important factor in its popular-

ity with users who still distrust black boxes.

The major weaknesses of the algorithm are that it can be very slow for more than about § vanables,
and that it can converge to a nonminimizer. The only example of the latter that we know of is given in
Dennis and Woods [1987] and it is mitigated somewhat by the nonminimizing limit being a point where the

derivative doesn’t exist. Both these shortcomings are the subject of current research.

It is worth noting that the example referred to in the paragraph above shows that the algorithm is not
safe for nonsmooth problems despite the fact that it uses no gradient information. Incidental to this cavea:

is that the example is convex.

52 Conjugate Direction Methods

The second class of methods that we discuss in this section is the conjugate direction algorithms. It
is not entirely accurate to say that they are not based on quadratic models, but there is never a need to store
a full Hessian. Therefore, these methods are especially suited for large dimensional problems where f (x)

and g (x) are available but n is too large to store or factor an n Xn matrix at each iteration.

Conjugate direction algorithms are usually presented as they would be programmed. This demon-
strates their most important property, computational simplicity and little storage, but it obscures the
geometric elegance that better helps the novice gain an overview of the whole class of methods.

Conjugate direction methods are most simply presented as methods for minimizing strictly convex
quadratic functions. We will follow the point of view taken in Dennis and Turner [1986] where the reader
can find all the proofs of results claimed here. We will adopt the standard convenience of taking xo=0.

Assume that we are at the k'™ iterate and that we have a scheme for generating a descent direction
desy for g(x)= %—x’Hx ~hTx, H symmeuic and positve definite, from x;. Suppose that x, minimizes
q (x) on a k-dimensional subspace spanned by the previous iterates. Choose x4, 0 be the unique minim-

izer of ¢(x) on the k + 1-dimensional subspace formed by adding di., to the previous spanning set. These

two sentences characterize the conjugate dircction algonithms. It is interesung to note that this point of

view is identical w the definition given by Cantrell [1969], Cragg and Levy [1969], and Micle and Cantrell
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[1969] of a ‘memory gradient’ method. It is completely developed in Dennis and Turner [1986]. Nazareth

[1986] gives a corresponding algorithm for general minimization problems.

It is easy to show that if we define at each iteration p; =x; —x;,-,, then pJHp, =0for 1< j <i Sk and

p/Vq(x)=0 for 1<j<k. Thus, solving the k+1 dimensional minimization problem on span

{p1,....Pr . dis1} for xzyy requires the solution of a (k + 1)-dimensional symmetric positive definite linear
system which is diagonal except for a full last row and column. This system can be solved explicitly, but

the expense of saving all the previous p;’s is too high for large problems.

If one can amrange to have dfHp; =0 for the oldest p;’s, then those p; do not have to be saved
because they are not needed explicily in solving for x;.;. It tumns out that dps=-Vq(xi)=h - Hx,
accomplishes this purpose for 1<i Sk —1 so that p.; is a linear combination of p; and di+. This for-

tunate circumstance follows from a more general result.

Let B be an arbitrary matrix and select each d,,; € span (d},Bp1,....Bp; ). Then, it is easy to show
that x, minimizes g(x) on span {d,,Bd,,..,B*"'d,}=K(d,,B,k-1), and that -Vq(x,)"Bp;=0 for
j=1,...k = 1. Thus, if we choose any B and generate d;., so that df,;H =- Vg (x;)7 B, then we only need
X, pe and di . o0 generate

d[ﬂHPt

Pret = drar +Bepe, Be = ~>THpr

dzﬂ Vq (xl)
dlaHpen

In this case, the p,'s are t0 be thought of as directions rather than iterative steps as they were defined

Xe+l = X + Q' Prel, O =

above, but there is no difficulty introduced into the discussion above by doing so. Of course 14,,; must
also be a descent direction for ¢ from x,, i.e., df,; Vq(x;)#0. The choice B=H gives rise 10
drs1=-Vq(x;) mentioned above. This is called the conjugate gradien: algorithm. The subspace

K (dy,B ,k-1) is called the & -dimensional Krylov subspace generated from d, by B.

If M is any symmetric positive definite matrix for which dys1=~M~'Vq(x,) is easy to compute,
then d,., is a descent direction and corresponds 10 B =M ~'H . The resultant method is called the precondi-
tioned conjugate gradient algorithm and M is called the preconditioner. The use of a preconditioner can

significantly improve the conjugate gradient algorithm. Let us now discuss briefly some factors in
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-~

:
choosing M . .
Intuitively, there are two things we might want to accomplish in our choice of M and hence B. We :
can try for a big reduction in ¢ by choosing M~! 10 be a good approximation to H~}. In other words, we $
can try to make our new directions d, approximate the Newton direction for g. This is the point of most ..
iterative methods, like SOR or Gauss-Seidel for example, and it is common to exploit such methods as ': X
preconditioners for problems where they were once used alone. In such preconditioners, one never needs \«
to work explicily with M since M~1Vg(x;) is the iterative step. It is worth noting that SOR does not ’.‘:
correspond to a symmetric positive definite preconditioner M and so SSOR, which involves a forward and :«.
then backward sweep, is generally used because it does comrespond to a symmetric positive definite M.
See Golub and Van Loan [1983]. "_ "
This way of choosing an iterative method as a preconditioner for a conjugate direction algorithm :
lends itself to two popular points of view: an optimizer would feel that the iterative method is being used _-\,
to accelerate the conjugate direction algorithm, but the numerical partial differential equations solver -

would be more likely to feel that conjugate directions is being used to accelerate the basic iterative method :
being used as a preconditioner. :
From a purely matrix algebra point of view, this first way of choosing M, which we have been dis- l::

RN

cussing, corresponds to making the condition number of M-%HM -1 smail, since this is the Hessian and .

M-1Vq(xy) is the steepest descent direction for g at x; in the transformed variables x =M %x. It is worth _
pointing out the result that the DFP or BFGS applied to minimize ¢ (x) with exact line searches and initial i’:
Hessian approximation M generates exactly the same points in exact arithmetic as the conjugate gradient -
algorithm preconditioned by M .
The second point of view in choosing M, and hence M-'H =B, is to try to make K (M~'h B ,n-1) _.
have the smallest possible dimension, say p << n. The reason is that in this case the algorithm solves the ;‘. ‘
problem in p steps. This can be seen from the fact that Vg (z,) is orthogonal to K (M~'k B ,p-1). Thus, l
M-'Vq(x,) cannot lie in K(M~'h,B,p-1) unless it is zero. Then it must be zero since \
M-'Vq(x,)e K(M~'h,B,p) and the Krylov subspaces have stopped increasing their dimension so p
K(M-'h.B,p)=K M- h.B,p-1). ;E
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If we ignore the influence of the initial direction on the dimension of K(M~h,B,n-1), then an

upper bound on that dimension is the degree of the minimal polynomial of B. This is easy to see since if
m(B)= gmB' =0 is the minimal polynomial for B, then O=m (B )M 'h is a nonzero linear combination
i

of the p + 1 generators for K(M~'h,B ,p) whose dimension must be less than p +1. Since B is similarto a

symmetric matrix, p is the number of distinct eigenvalues of B =M~'H. See Hoffman and Kunze [1971].

It is not unusual for strictly convex quadratics arising from discretized partial differential equations
to be solved with p ~n/103. Such spectacularly successful preconditionings nearly always come from deep
insight into the problem and not from matrix theoretic considerations. They often come from discretizing

and solving a simplified problem.

The choice of preconditioners for optimization problems is not nearly so well understood. This may
be because most of our effort has been directed toward algorithms and software for general library use.
We have generally used conjugate direction methods only for nonquadratic problems, and then only for

problems so large that we have no other choice (see Section 6.1).

For nonquadratics, the conjugate gradient formulas are generally given by

. . V)TV () )
Prse1 = Vf (xk)+ Bl Pk Bl = f (xl-l) f(xk_]) (5-3)
and
Xka1 = Xi + 04 P+, O Minimizes f along pey;. (5.24)

If f (x) is quadratic, (5.2.34) are equivalent to (5.2.1-2), but no matnix is required by (5.2.34). In general,
the line search is not done exactly but it has to be done fairly accurately; see Gill, Murray, and Wright

[1981).

Of course, the conjugate directions do not remain conjugate in finite precision implementations, and
there is no reason they should be conjugate for nonquadratics. The standard way to handle this is to save
some past vectors and make sure d; is made conjugate with respect o these few vectors (see Vinsome
[1976], Young and Jea [1981]), or to restart the method, perhaps by taking d. penodically o be a linear
combination of some restart vector and the d, that would have becn chosen if a restart were not due. See

Beale [1972] or Powell [1977].
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6. Some Current Research Directions

In this section we will give brief summaries of some interesting areas of ongoing activity. We will

discuss large problems, data fitting, secant updates, singular problems, and parallel computation.

6.1 Large Problems

There are three different scenarios we wish to consider here:

(i) A quadratic model can be formed and the model Hessian can be factored if sparsity is taken into

account.

(if) A quadratic model can be formed but linear iterative methods must be used to solve the model prob-

lem in place of matrix factorizations.

(iii) The problem is 100 large for any explicit use of a model Hessian.

It is important to note that the number of variables alone does not determine which class fits a partc-
ular problem. If a big problem has a nice enough sparsity structure in the Hessian it fits in class (i); if the
sparsity structure is not so nice it fits in (ii); and if it isn’t sparse enough for (ii) it fits in (iii).

For problems in class (i), our first choice would be to use a Newton or finite difference Newton
model as outlined in Section 3.5. If we wish 10 use a secant method, then we should use a so-called "lim-
ited memory” method in the spirit of the last implementation in Section 3.3. Probably, these methods fit
better with a linesearch rather than a trust region. Buckley and Lenir (1983) is a limited memory method

which has been highly recommended to us by users.

For problems of class (ii), there is an elegant generalization of the dogleg algorithm (Steihaug
(19803}, Toint [1981]) which has shown its metle in dealing with seismic inversion. This algorithm can be
viewed as a trust region implementation of the conjugate direction inexact Newton method. The idea is
simple. Given a quadratic model and a trust radius, perform conjugate direction iterations to compute the
Newton step until either the Newton step is computed inside the trust region and taken as the trial step, or
until some conjugate direction iterate lands outside the trust region. When the latter happens, the tnal step

is taken (o be at the intersection of the trust region and the last conjugate direction step, or a direction of
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negative curvature for the quadratic model is generated at some conjugate direction iterate inside the trust
region, and the trial step is taken where this negative curvature direction strikes the boundary of the trust

region. If a preconditioner is used, it can be thought of as defining the shape of the trust region.

As computer storage has become less expensive, fewer problems must be relegated to class (iii).
Generally, these problems are solved using the non-matrix form of conjugate direction methods mentioned

at the end of Section 5.2.

Finally, Griewank and Toint [1982a,b] have suggested and analyzed an interesting approach (o
obtaining Hessian approximations for problems where the objective function can be written as the sum of
objective functions that each involves its own subset of the variables. Generally speaking, the summand
functions should have small dense Hessians which are positive semidefinite at the point formed by select-
ing the relevant subset of the components of the minimizer of the problem. This allows an approximate
Hessian of the sum to be assembled from (for example) BFGS updates of the summand Hessians. The
reader familiar with research on sparse matrices will recognize the connection with so-called clique or

finite-element storage. See Duff, Erisman, and Reid [1986].

6.2 Data Fitting

One of the most common sources of optimization problems is in parameter estimation arising from

fiting mathematical models to data. Typically, data

t.x), i=l,--- . m 6.2.1

has been collected, and one wants 1o select the free parameters x € IR* in the model m (¢ .x) so that
mt,x)Ey;, i=1,.m . 6.2.2)
Such problems arise in almost all areas of science, enginecring, and social science. A more common nota-
tion in these applications is (xi,¥:), i=1,.,n for the data, and f (x,8), 8e IR? for the model (6 may be
replaced by B or other symbols), but we will use (6.2.1-2) to be consistent with the remainder of this book.

Generally, there are far more data points than parameters, that is m >>n in (6.2.2).

RS T Ry eV

o

!

UGS AAEE P I N O S AR A SR AN

»
Ph a5

P (I‘f.r’:

e SR

.

-

4 l."~ ,.' ." ." .

e

o',

P
L




Ve ia A'a 'k % A'a A's B'8 A A'S 2% Ra A'A A%s £'a B'a d'ad'a Ata 2's A's £'a A's f'a dba 40s sl 4%a gla A

69

Usually it is assumed that each ¢; is known exactly in (6.2.1) but that y; is measured with some error.
In that case it makes sense to achieve (6.2.2) by making each residual

rix)=m(,x)-y
as small as possible. Let

Rx)=(ry(x),....r;m (X)) .
Then we wish to choose x so that the vector R (x) is as small as possible, in some sense.

If we choose x to

. inimize | .

mx:l‘xgl.xzellk(x)lll or mxxnexnnzl'lzel Rx)l 6.2.3)
then we have a non-differentiable unconstrained optimization problem. There has been considerable
rescarch into methods for solving (6.2.3), see e.g. Gill, Murray, and Wright [1981], Murray and Overton
[1980,1981], Bartels and Conn [1981] and Conn [1985]. Research is continuing into producing algorithms

and software for such problems.

It is much more common to use the /2 norm instead of (6.2.3), i.e.

L 1 PRI | T

minimize f (1) = 3 $ rix 2= FRO)R (x) (6.2.4)
If each y; = m(t; ,X) + ¢; for some true parameter value ¥ and some random error ¢;, and if the m random
errors arise from independent and identical normal distribution with mean 0, then (6.2.3) produces the max-

imum likelihood estimator of ¥. In any case, (6.2.4) generally is easier o solve than (6.2.3).

If R(x) is linear in x then (6.2.4) is a linear least squares problem and it can be solved in O(mn2)
operations; see Stewart [1973], Lawson and Hanson [1974], or Golub and Van Loan [1983]. Otherwise it
is a nonlinear least squares problem. The nonlinear least squares problem is a particular case of uncon-
strained optimization and can be solved by the techniques of the preceding sections. But many special pur-

pose methods have arisen that take advantage of the special form of the derivatives of f (x),

Vf(x)=§;Vn(x)r.-cr)-f(x)fk(x)

where J(x)e R™** denotes the Jacobian matrix of R (x ), and

V2f (x) = ; (Vr,@)Vri(x)T + V2r (x)ri(x)) & J (x)TJ (x) + S (x) 6.2.5)

where § (x)e R** is the part of V2f (x) that is a function of second derivatives of R (x ).
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If both first and second derivatives of R (x) are available (and n is not too large) then the nonlinear
least squares problem should probably just be solved by standard unconstrained optimization methods.
Otherwise the goal of most special purpose nonlinear least squares methods is o produce efficient methods
that require only analytic or finite difference first derivatives of R (x). This supplies V£ (x) and the first
part of V3f (x), but not the second order pan S(x). Many strategies for using this special structure exist,

and we summarize them very briefly. For more detail see Dennis and Schnabel [1983].

Gauss-Newton and Levenberg-Marquardt methods simply omit S(x) and base their step on the

model

m(x.+d)=f (x.)+Vf (x.)Td + %dTJ (x)TJ (x.)d (6.2.6)
This is very reasonable if the data (6.2.1) is fit well by the optimal modei m (¢; .x« ) since in this case R (x-)
and hence S (x.) will be nearly zero, and omitting S (x) will cause little harm. Methods that use a line
search in conjunction with (6.2.6) are generally called Gauss-Newton methods, while the use of a trust
region leads to More 's [1978] derivation of the Levenberg-Marquardt method. This method is imple-
mented in MINPACK (More , Garbow, and Hillsrom [1980) and has been quite effective in practice. Note
that (6.2.6) is equivalent to

m(xe+d) = + 1R (x)+J (x)d 117
and so these methods can be derived from the linear Taylor series model of R (x).

Alternatively, secant methods for nonlinear least squares construct approximations to V2f (x) given
by (6.2.5). Some codes have used the methods of Section 3.4 to approximate all of V2f (x), but more suc-
cessful methods have arisen by approximating V2f (x. ) by

J(x)TJ (xe) + Ac
where A, approximates S (x;). That is, the available part of the Hessian is used and only the unavailable
part is approximated. Dennis, Gay and Walsch [1981a,b] constructed a very effcctive method along these
lines. In general, such quasi-Newton methods are more effective than modem Levenberg-Marquardt

methods on problems where R (x. ), and hence $ (x.) is large, and of comparable effectiveness otherwise.

Research is continuing on various aspects of nonlinear least squares calculations, including large

residual problems (Salane [1987)), large dimensional problems (Toint (1987]), secant approximation (Al-
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Baali and Fletcher [1983], and application of the tensor methods mentioned in Secton 6.5 (Hanson and
Krogh [1987], Bouaricha and Schnabel [1987]).

An interesting variant of the data fiting problem occurs when there is experimental error in both ¢

Ny Wy P

and y,. In this case it becomes appropriate 1o measure the distance between the data point (¢;,y,) and the
fiting function m (s x) by the (weighted) Euclidean distance from the point to the curve. Boggs, Byrd, and

Schnabel {1987) show that minimizing the sum of the squares of these distances leads to the problem

inimi . 2 282
minimize § (m (1 +8, x)-y, 4 w6?) (62.7)

for appropriate weights w;. Problem (6.2.7) is a nonlinear least squares problems in m+n variables, but

Schwetlick and Tiller [1985] and Boggs, Byrd, and Schnabel [1987] show how to solve it efficiently using N
essentially the same work per iteration as for the standard nonlinear least squares problem (6.2.4). Boggs,
Byrd, Donaldson, and Schnabel [1987] provide a software package for (6.2.7). The case when m(r x) is

linear in both ¢ and x is addressed in Golub and Van Loan [1980).

f £ ¢ T

Finally, there is an increasing amount of cross-fertilization between the optimization and statistical
communities in the study of data fitting problems. Areas of interest include the application of modem g
opumization techniques to specialized data fitting problems (see e.g. Bates and Watts [1987], Bunch
[1987], and the statistical analysis of parameter estimates obtained by nonlinear least squares (see e.g.

Bates and Waus [1980], Cook and Witmer [1985], Donaldson and Schnabel [1987].

6.3 Secant Updates

The investigation of alternative secant methods for unconstrained optimization is enjoying a recent
revival. This was a very active area in the 1960°s and 70's, starting with the discovery of the first secant
update, the DFP update (3.4.7), and continuing with the discovery of the BFGS update (3.4.5). Much :
interest was focused on the Broyden family of updates (Broyden [1970])

B .(08) = 0B 2FF 4+ (1-0)BBFGS (6.3.1)
which differ from each other only by multiples of a rank-onc matrix; this topic is discussed extensively in

Fletcher [1980). Several convergence results for any choice of 8€[0.1] have been proven: sce e.g.

Griewank and Toint [1982b] and Stachurski {1981). But the consensus for over 10 years has been that the K
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BFGS is best in practice. One hint is a powerful convergence result of Powell [1976] for the BFGS that
has never been extended to the DFP.

Some recent research has attempted to explain theoretically the superiority of the BFGS. Powell
[1986] uses a simple example to show that the DFP can be very much slower than the BFGS. Byrd,
Nocedal, and Yuan [1987] extend Powell’s 1976 convergence result to any 6€ (0,1], i.e. any convex combi-
nation of the DFP and the BFGS except the DFP, and in doing so show that the DFP lacks a self-correcting
term in its update formula. Dennis, Martinez, and Tapia [1987] show that the BFGS has an optimal

bounded deterioration property in the convex class.

Other recent research has resumed computational and theoretical investigation of choices other than
the BFGS (6 =0) in (6.3.1). Zhang and Tewarson [1986] consider using 8<0; they extend Powell's con-
vergence result to their strategy and their computational results show that it may produce better results than

the BFGS in practice. Conn, Gould, and Toint [1981) revisit the symmetric-rank on update,

- (y: -Bc Se )(Yc _Bc Se )T
B.=B.+ e -B. s )Tsc

the choice 8 = (pTsc Y/ (y.~B.s. )T sc in (6.3.1), which may have a zero denominator, and show that it may

be competitive with the BFGS when used in conjunction with a trust region method and safeguarding of the

denominator.

Dennis and Walker [1985] and Vu {1984] have studied the problem of dealing with noise in y for the

least change Frobenius ncrm updates, but the more important analysis for the BFGS update is not so well

understood.

A very important practical problem in secant updating comes from constrained optimization. We
want to extend the BFGS method to maintain an approximation to the Hessian of the Lagrangian with
respect to the primal variables. The most commonly used method is due to Powell [1978), but he shows in
Powell {1985] that it can lead w ill-conditioning in the approximate Hessians, Tapia [1984] suggests and

analyzes a promising procedure.

Some very elegant work on secant methods for nonlinear problems that come from discretization of
infinite dimensional problems has been done by Gricwank {1983] and Kelley and Sachs [1986]. They give

a new derivation of the method for nonlinear two point boundary value problems suggested in Hart and
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Soul [1973]. The idea behind this work is to consider the operator equation in its natural function space
setting. Roughly speaking, one defines a least-change secant method for the operator equation using the
norm in which Newton's method could be shown to have its familiar convergence properties. This gives a ‘
point-wise quasi-Newton method equivalent to a local affine model which one discretizes and solves. In
other words, linearization precedes discretization instead of the standard approaches in which one discre-

tizes the operator equation and then iteratively linearizes it. N

Finally, the advent of parallel computers is leading to revived interest in multiple secant updates.

These are methods that attempt to satisfy more than one secant equation at each iteration in order to inter- E
polate more than one previous value of g(x) for optimization, or of F (x) for nonlinear equations. They E
were first mentioned by Bames [1965] for nonlinear equations and shown by Gay and Schnabel [1978] and )
Schnabel and Frank [1987] to lead to small gains over Broyden’s method for nonlinear equations. The
application of this approach to unconstrained optimization has fundamental limitations, see Schnabel :
[1983]. But these methods now seem naturally suited to parallel computation where multiple values of '
g (x) or F(x) may be caiculated at one iteration; see ¢.g. Byrd, Schnabel, and Shuitz [1987].

;.':‘

x
6.4 Singular Problems :

There are a number of practical problems for which J (x.) (for noniinear equations) or V2f (x. ) (for :
optimization) are singular or nearly singular. We call these singular problems. None of the convergence
results of Sections 2-3 apply to singular problems, and by considering one vanable problems we can see ;:
that slow convergence is to be expected. For example, applying Newton's method for nonlinear equations K
10 solve x2 = 0 produces linear convergence with constant -5— while applying Newton’s method for optimi-
zation to minimize x* gives linear convergence with constant %— Clearly the standard linear and quadratic ‘
models are less helpful in these cases since all the derivatives used in the standard models approach zero as ‘2
X CONVErges to X . E-
There has been a considerable amount of recent research analyzing the behavior of standard methods :

on singular problems, and suggesting improved mcthods. Most of this rescarch has been for nonlinear ':
equations problems and is summarized excellently in Griewank [1985]. We will give a very bnef
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indication of this work.

Many researchers have analyzed the convergence of Newton’s method for solving singular systems

of nonlinear equations. For "regular” singularities, results such as those in Decker and Kelley [1980a,b] or
Griewank [1980] show that one can still expect linear convergence with the constant converging o 21—

Decker and Kelley [1985] show that Broyden’s method, like the one-dimensional secant method. is linearly

convergent on singular problems with constant converging to (¥5-1)1220.62, from certain starting points.

Various acceleration schemes for solving singular systems of equations have been proposed, and
they are surveyed in Griewank [1985]. Many authors have suggested methods related (o the one variable
idea of doubling the Newton step that are intended solely for singular problems. One difficulty in applying
these techniques is that one may not know a priori whether the problem is singular. Some methods from
curve following are also applicable to singular systems of equations. (see e.g. Moore and Spense [1980]).
Griewank [1985] and Schnabel and Frank {1984,1987] have proposed methods that are applicable to both
singular and nonsingular problems. These methods append a simple low rank quadratic term to the stan-
dard linear model, in a way that doesn’t significantly increase the costs of forming, storing, or solving the
model. Schnabel and Frank report that their "tensor” methods lead to significant improvements on both

singular and nonsingular test problems.

The solution of singular unconstrained optimization problems is more complex. This is related to the
fact that for one variable problems, if £ % (x.) = 0, then we must also have f% (x.} = 0 and f* (x» )20. Simi-
larly, Griewank and Osborne [1983] show that if V2f (x.)v =0 at a minimizer x., then we must have
V3f (xe Jvww =0, V4f (xo )yvwv 20, and V3£ (x)vv not too large. These conditions imply that the singularity
is "irregular” and invalidate most of the approaches mentioned above. Schnabel and Chow [1987] intro-
duce a "tensor” method that appends low rank third and fourth order terms to the standard quadratic model,
without requiring any additional function or derivative evaluations and without appreciably increasing the
cost of forming, storing, or solving the model. They report that their approach leads to a substantial reduc-

tion in the cost of solving both singular and nonsingular test problems.

.

DTN NN,

.._-.

kS



75

6.5 Parallel Computation

%
An important recent development in computing is the commercial availability of paralile! compuiers. :-
computers that can perform multiple operations concurrenty. These include M/MD (Multiple Instrucuon i"
Multiple Data) computers that allow different instruction streams to be executed concurrendy, processor _
arrays that apply the same instruction stream to multiple data streams concurrently, and vector computers
that use data pipelining 10 rapidly perform pairwise addition or multiplication of vectors. Since it appears ..
N
that many of the significant future gains in computer speed will come from effecuvely utilizing such =
machines, it is becoming important to design optimization methods that utilize them efficiently. Virwally \_
all the research in this area is quite recent, and we will simply indicate some of the approaches that are "
emerging. These are primarily oriented towards MIMD computers, which seem 1o be the class of paralle] N
computers best suited towards parallel optimization because they support concurrency at a coarse-grain 3
algonthmic level. :
i
One approach towards parallel optimization is to design general purpose parallel vanants of the X
Newton or quasi-Newton methods discussed in Sections 2-4. These types of methods have have two :::
potentially significant costs that must be considered in constructing parallel versions. They are the evalua- .Z-
tions of functions and derivatives, and the linear algebra costs in solving linear systems or updating secant E'-'
approximations. Both can be adapted to parallel computers. -
The most obvious way to use a parallel computer effectively during the evaluaton of functions or
derivatives is to perform the multiple function evaluations of a finite difference gradient or Hessian calcula- :-':'.
tion concurrently (Dixon [1981], Patel [1982), Lootsma [1984]). Schnabel [1986] introduces the idea of i
performing a speculative finite difference gradient evaluation concurrenty with the evaluagon of f (x) at a
trial point, before it is known whether this point will be accepted as the next iterate. Since the acceptance .
rate for trial points usually is at least 70%, this gradient value will usually be needed. so this simple stra- :
tegy will utilize n +1 or fewer processors quite efficiendy if function evaluation is the dominant cost. Byrd, -.
Schnabel, and Shultz [1987] investigate the more difficult question of effectively utilizing more than n +1 E:'.

Ty
L

(but fewer than %n’) processors; this leads to new optimization methods that usually require significantly

fewer uterations that the BFGS method. An alternative (see e.g. Patel [1982)) is 10 evaluate f (x ) at many
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trial points simultaneously, but this appears unlikely to produce as much increase in speed. 1

An n become large it is also important to perform the lincar algebra calculations in parallel. For .
methods that use the Hessian, paralle! matrix factorizations and backsoives are required and many effective X
algorithms have been produced (see e.g. Heller [1978), Geist and Heath [1986]). For BFGS methods, Han E
[1986] has proposed an implementation that sequences a factorizaton ZZ7 of the inverse of the Hessian )
approximation and is well suited 10 parallel computers. An aliernative is to utilize the unfactored inverse _
update (3.4.6), which appears to parallelize as well and require fewer arithmetic operations. Traditionally .’-
there has been some concern over the numerical stability of these approaches (see ¢.g. Powell [1987)); this i
issue is now being re-examined since they seem better suited to parallel computation than the Cholesy fac- ‘
torization update (3.4.4). N

It will also be increasingly important 1o develop specific parallel optimization methods for particular M
classes of expensive optimization problems. Some early examples include Dixon, Ducksbury, and Singh f.

-

[1982), and Dixon and Spedicato (1985). There has also been work on parallel methods related to other
optimizaton methods we have discussed; for example see Housos and Wing [1980] for a parallel conjugate

direction method, and Lescrenier {1986] for a parallel approach (o partially separable optimization.
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